November 5, 2018 13:7

1

Special and General Relativity (PHZ 4601/5606) Fall 2018 Solutions Set 11

26. Are t = var, $x^i = const$ lines geodesics?

The metric is $d\vec{s}^2 = dt^2 - dl^2$ and $dx^i = 0$, t = var hold. Hence, $ds^2 = dt^2 \Rightarrow s = t$. So, $\dot{t} = 1$, $\ddot{t} = 0$ and $\dot{x}^i = 0$, $\ddot{x}^i = 0$. Now, let us check the geodesic equations of $L = \dot{t}^2 - g_{ij} \dot{x}^i \dot{x}^j$:

$$\frac{d}{dt}\frac{\partial L}{\partial \dot{t}} - \frac{\partial L}{\partial t} = 0 \quad \Rightarrow \quad 2\ddot{t} - g_{ij,4}\dot{x}^i \dot{x}^j = 0$$

which is solved by $\ddot{t} = 0$, $\dot{x}^i = 0$. Next,

$$\frac{d}{dt}\frac{\partial L}{\partial \dot{x}^i} - \frac{\partial L}{\partial x^i} = 0 \quad \Rightarrow \quad -2\frac{d}{dt}\left(g_{ij}\dot{x}^j\right) - g_{jk,i}\dot{x}^j\dot{x}^k = 0$$

because of $\dot{x}^i = 0$. So, the geodesic equations are satisfied.