Riemann Curvature Tensor

In the following we use the notation colon : instead of semi-colon ; for the
covariant derivative. Covariant derivatives do not commute. As in Rindler
before Eq. (10.55) on p.217 we define
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for the two orders of the covariant derivatives. Using the symmetry F? P = sz

the difference becomes
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Comparing corresponding terms we get
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where the product rule has been applied. Using now the symmetry V;’k = VZJ
we get
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Next, inserting the definitions of the brackets
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holds. Combining from (4) and (5)
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is seen to be true due to symmetry under exchanging j and k. Left over are
from (4) VT, —V*Tl ; and from (5) V*T?, T — VI, T So, the result
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defines the Riemann curvature tensor. These are 256 functions, which are
related by many symmetries (identities). See Rindler p.218/219.



