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Let us consider the geodesic between two given points A and B, and a bundle of
neighboring curves also connecting A to B. Our problem is to find the curve satisfying
the variational principle

; 2 Lb]
0=afd.s-=af{g,-jdx' dd |1/ =af
iy

where in the last integral « is an arbitrary parameter which continuously parametrizes
the entire bundle of comparison curves (much like ¢7 in Fig. 10.1) $0 as to have fixed
values 11} and u; at the fixed end-points of the curves. With f — dx'/du, eqn (10.6)
becomes

/2

dxt dx/
K (10.6)

ST

af |gi i 5] du =:5[L(x"._tf)du =0, (10.7)
The reader is perhaps familiar from classical mechanics with this kind of “variational’
problem. Its solution »' = x'(u) is found by integrating the well-known Euler—
Lagrange differential equations:
d s9L oL
— =] - — =0, 10.8
du (('J.i") dx! (10.8)

At this stage we may conveniently take # to be the are s along the solution curve,

provided that curve is not null. This makes L = 1 along the solution curve and allows
us to replace the awkward Lagrangian L defined by eqn (10.7) (the square root of a
metric i$ never pleasant) by essentially its square,

L = gii'il = =12, (10.9)
For consider the variational principle
a[ % ds =0, A JL (010
L= 2=
whose solution is determined by the N equations 4/ S X A

d /0% 2 d 9L oL
Li=—(=)-—==0=—(20—2)-212=, 10.11
' ds(ﬂ.i") dai ds (2 ax—a) axi (101D

where, for future reference, we have introduced the notation L Tor the LHS of the
ith equation. Since the solution satisfies L = const, we see that the Euler— agrange
equations for & are equivalent to those for L. They are, in fact, the standard equations
used in the practical determination of geodesics.

Mainly for theoretical purposes, we now further examine the structure of the set
of eqns (10.11)(1). With (10.9) substituted it becomes, successively (with a few index
tricks),

'.=_d._(2 ..,:-J')__ aoxlik — 0
- = 8ij- 8jkix X" =
2811k ¥ 4+ 21150 — gy ik = 0 (10.12)

(ijk + &ik.j — ik )3 +2g;,80 = 0.

L)

()

)
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So if we now define the so-called Christoffel symbols of the first kind by

Ciji = %(gij.k + &ik.j — &jk.i)s (10.13)
and those of the second kind (also called connection coefficients) by raising the index i,
[y = g" Tap, (10.14)

we can re-express eqns (10.12) (after raising i and recalling g’ = 5}) as

U=+ =0 (10.15)

To—

E ths %3\ n Eﬁt :
This is the alternative standard form of the set of differential equations for geodesics. It
shows that geodesics are fully determined by an initial point O and an initial direction
.i-é. [Alleast, if we assume analyticity: foreqn (10.15) yields .555, (10.15) differentiated
yields 16 ete., and so the Taylor series for x/ (1) can be constructed.]

The Christoftel symbols play an important role in differential geometry and also
in GR. But rhey are not rensors! We note their symmetry:

Dk =Ty Th =T, (10.16)
and the ‘inverse’ of eqn (10.13). which shows they are not tensors:
8ijk = Lijk + Tjig. (10.17)

[For proof, just substitute (10.13) into the RHS.] This latter equation, together with
(10.13), shows that the vanishing of all the I's at one point is equivalent to the vanishing
of the derivatives of all the gs.

G e can sometimes bypass (10.13) and simply compare the coefficients of#7 3~
in eqns 15) with those in the written-out versions of eqns (10.11). ThigwOrks best
in the case oI™wgthogonal coordinates when eqns (10.11) and (10, L3y differ only by
a factor 2g;;. But one can also use the formulae of the ndix of this book.
(See, for example, Exercisg 10.3.)

The reader may worry thasggn (10.15) “does n ow’ that the parameter is
supposed to be the arc. But, essentsally, it knows? one can show [cf. after (10.42)]
that any solution x' (1) of (10.15) with du necessarily satisfies

7% % = condh (10.18)

that is, L = const, which#as the basic assumption of our tegivation,

We can re-write edn (10.18) in the form ds? = (const) dirand deduce, first,
that the sign gbs is necessarily constant along a geodesic, and secoag, that every
solution pafameter is “affinely’ related to the arc:
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systems.] For proof we have, with "= d/du,

ot

if il
o=pix

= pll il (10.24)

Now any geodesic x/(x) through P referred to an affine parameter must satisfy
eqn (10.15), and thus ¥/ = 0 at P if (x'}is a geodesic system. For two such Sys-
tems we then deduce from (10.24) that ( pj.'k)p = 0. Conversely, if ( pj,.'k)p = 0 and
{x'} is geodesic at P, every geodesic in {x'} also satisfies & = 0 at P and 50, by
(10.18), (e = 0. )

Next suppose we transform from a system {x' } that is geodesic at P to an arbitrary
system {x'}. Then all geodesics through P, ar P satisty i’ = 0 and thus, “flipping”
pf "in eqn (10.24),

o ik
X+ pyppxxt =0,

Comparison with (10.15) then shows that at P:

Clp = gl (10.25)
_—

However,‘if we differentiate the relation p: p; = 5; [ef. (7.2)] with respect to x*,
we find

Py Pl + plpp Pl =0,

which, after a cosmetic dummy replacement, yields the following alternative to the
RHS of (10.25):

Pix = —plyr] pf . (10.26)
Both versions will be needed in the next section.

AWy ~Dordinate endnlerme o - hibao oo oLlo

quatteng like (10.22) are called Riemannian. If additionally they are ortherGrmal [
that is, psetdecEuclidean) at P, tEey are called normal coordinatgs~ith pole at P,
ny twonormal systemsat P are related to each other globally by generalized rotations
bout P; that is, transformattoss that preserve the (psea d0-)Euclidean metric at P. (In

; : dat dx/ 5 7
(8P X' (@) ¥/ (= (i )p—— =1 = 52 =omdp ' (0) 7 (Q).
dir du :

whepe~(%;;)p and (g;)p both represent the {pseudo-)Euclidean metric at~R_That
- _ : " X (82 T‘"‘(‘f’)z lf‘l'zN e L (PTTRRT L ]

T PrePE = 555 s

ovestirForexamplers—:l >
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Since the 3-index psii (n the last two terms\ vanish between geodesic systems. Fir s
is seen to behave tensorially between such systems. We now define the covar mm
derivative F ; 4 of F , in an arbitrary coordinate system {x"}, as the tensor transform

of the partlal deuvauve in a geodesic system {x' }

Fj’: ‘F Aprpjpi\

Since the partial derivatives are related tensorially among geodesic systems, Fj 2 18
related tensorially to a/l of them, by_transitivity (cf. Seutlon 7.2C). The same is true
of F s sumlarly defined in another arbitrary system {x' } So, again by transitivity
and symmetry, A and F ». o are tensorially related, which shows that our definition
indeed creates a tensor

In eqn (10.27), let us now assume the system [xf '} to be geodesic and the system
{x'} to be arbitrary; let us write « for the dummy j in the Iast term, and similarly
for the dummy i in the term before; if we then ‘flip’ P - P i and PA' [ef. (7.3)],
we get

Fi ,kp, pJ, A = F’k + F"paip’ —LF'p},k,pj. r.
The LHS is the required covariant derivative F!,, ! .. On the RHS we can eliminate

all reference to the auxiliary geodesic coordinate system by applying our carefuily
prepared formulae (10.25) and (10.26). Thus we finally obtain (with some relief!)

Fl,=Fl +FiTh, - Fir%. (10.28)

This formula is typical. For the general tensor field F" it again begins with the partial
derivative, followed by posirive ['~terms resulting from the replacement, one after the
other, of all the contravariant indices of £ by a dummy which is linked to a " that
also takes over the replaced free index; similarly there is a negative I'-term for each
covariant index. It is an easy pattern to remember. In particular, for a scalar ¢ (x7) it
gives "

¢ =9, (10.29)

which is not surprising, since ¢ ; is a tensor.
A pleasant property of the covariant derivative is that it satisfies the ordinary rules

for differentiating sums and (inner and outer) products:
(S +T =S4+ T (10.30)
oL =8 ad+ 80T (10.31)
For, at the pole of geodesic coordinates, where covariant and partial differentiation

are the same, the above equations are trivially true; but, being tensor equations, they
must then be true in all coordinates.
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10.5 The Riemann curvature tensor

Let us introduce the following notation for the repeated covariant derivative of a

tensor:
(T =T

and similarly for higher derivatives. (This paralle]s the notation we have already
introduced in Section 7.2E for repeated partial derivatives: 7 ) From eIementary
calculus we are familiar with the commutativity of partial denvatwes o=ty
But the corresponding statement for covariant derivatives is generally faIse Only m
flat space is it true that

T =T (flatspace), (10.54)
For then we can always choose (pseudo-)Euclidean coordinates (g;; i = :i:8 ), in
which the I's vanish globally, and in which even repeated covariant ditferenuanon
therefore reduces to repeated partial differentiation; in these coordinates, (10.54) is
true, and being tensorial, it must then be true in all coordinates. In the general case
we cannot prove (10.54) by going to the pole of geodesic coordinates: for while the
I's vanish there, the same is not true of their derivatives. And it is these which cause
the inequality.

Let us do the calculation for the simplest case, a vector V. We have

Vh;j - [Vh_' V"F,’j,] = [?] . say

P h b il

If we write this out in full, reverse j, k and subtract, we find
VA = Vi = —VYR? i, (10.55)

where

R'ijg =T j =Tl o+ T T8 ~Th e (10.56)

Since V* in(10.55) is an arbitrary vector, it follows from the quotient rule (cf. Exercise
7.2) that R"; ijk tmust be a tensor. It is, in fact, one of the most important tensors in
Riemannian geometry, the so-called Riemann curvature tensor. Its reiation to the
curvature at a given point will become apparent a litile later. In Hat space it clearly
vanishes. And conversely, its global vanishing can be shown to imply flat space.




