ADVANCED DYNAMICS — PHY 4241/5227
MOMENTUM CONSERVATION

Linear Momentum

In accordance with Noether’s theorem, we derive momentum conservation from
translation invariance

o0 L = 0, oL =0 and 0.L = 0. (1)

Using the definitions of the variations and the Euler-Lagrange equations, we find for
a n particle system (note that the displacements agree for all particles)
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In vector notation the result reads
P = Zﬁ = constant . (5)

Angular Momentum
The total angular momentum of a system is
L = > 7 %P (6)
J
where the sum of over point particles. We now consider an infinitesimal rotations by
an angle ¢: ‘ ‘
0r; = dp x 1, O0T; = 0¢ X 7Tj. (7)

For example, if this rotation is about the z axis |07;| = |d¢r; sin(f)| holds. The
components of the rotations (7) are
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where ¢ = 1,2,3 labels the coordinates and j = 1,...,n the particles. Assuming
symmetry of the Lagrangian under the rotation, we have
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Using the definition of the genralized momentum and Euler-Lagrange equations, this

reads
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Inserting the definitions (7)

0 = {5+ (66 % 75) + 5 - (56 x 1)} (11)

and we want to pull out the 6(5 rotations as they are the same for all particles:



