Special and General Relativity PHZ 4601

Test on Homework November 30, 2018.

1. Twin travel in 2D Minkowski space (36\%).

Figure: Minkowski space in which observer B travels away from observer A to the space-time point B_{0} and back to A. Natural units with $c=1$ and arbitrary time units are used.

We use dimensionless units with $c=1$ in this problem. The figure for this problem is drawn in the rest frame of observer A. The initial position of observers A as well as B is $\binom{t}{x}=\binom{0}{0}$. Observer B travels in the rest frame K_{1} of A with constant velocity β_{B}^{1} away from A , turns at position B_{0} given by $\binom{5}{4}$ and travels back with velocity $-\beta_{B}^{1}$ to meet A again. In the following state all results as integers or fractions of integers.
(a) What is the value of β_{B}^{1} ?
(b) What is the elapsed time on the clock of B at B_{0} ?
(c) What is the elapsed time on the clock of A when A meets B again?
(d) What is the elapsed time on the clock of B when A meets B again?

Consider the inertial frame K_{2} in which B is at rest for the first part of its travel, i.e., from the origin to B_{0}. Arrange K_{2} so that its origin agrees at time zero with the origin of K_{1}.
(e) Find the velocity β_{A}^{2} of A in K_{2}
(f) Write down the coordinates of B_{0} in K_{2}.

2. Radar distance (28\%).

The radar distance is defined as $(c / 2) \triangle \tau$ with $\Delta \tau$ being the proper time elapsed on a standard clock between emission and reception of a radio echo.

Observers at two fixed points A and B in a stationary gravitational field, respectively at Φ_{A} and Φ_{B}, determine the radar distance between them by use of standard clocks. Let L_{A} and L_{B} be the determinations made at A and B respectively. Find L_{A} / L_{B}.

3. Schwarzschild metric (36%)..

Note that this problem is for $R_{t t}$ as in HW 32 and not for $R_{r r}$ as in CW 31.
For the diagonal metric

$$
d \vec{s}^{2}=a\left(d x^{1}\right)^{2}+b\left(d x^{2}\right)^{2}+c\left(d x^{3}\right)^{2}+d\left(d x^{4}\right)^{2}
$$

where a, b, c, d are functions of the coordinates, the R_{11} compoment of the Ricci tensor is given by

$$
\begin{aligned}
& R_{11}=+\beta a_{22}+\gamma a_{33}+\delta a_{44} \\
&+\beta b_{11}+\gamma c_{11}+\delta d_{11} \\
&-\beta^{2} b_{1}^{2}-\gamma^{2} c_{1}^{2}-\delta^{2} d_{1}^{2} \\
&-\alpha a_{1}(\left.+\beta b_{1}+\gamma c_{1}+\delta d_{1}\right) \\
&-\beta a_{2}\left(\alpha a_{2}\right.\left.+\beta b_{2}-\gamma c_{2}-\delta d_{2}\right) \\
&-\gamma a_{3}\left(\alpha a_{3}-\beta b_{3}+\gamma c_{3}-\delta d_{3}\right) \\
&-\delta a_{4}\left(\alpha a_{4}-\beta b_{4}-\gamma c_{4}+\delta d_{4}\right)
\end{aligned}
$$

where we use the notation

$$
\alpha=\frac{1}{2 a}, \quad \beta=\frac{1}{2 b}, \quad \gamma=\frac{1}{2 c}, \quad \delta=\frac{1}{2 d},
$$

and for $i, j=1,2,3,4$:

$$
a_{i}=\frac{\partial a}{\partial x^{i}}, \quad a_{i j}=\frac{\partial^{2} a}{\partial x^{i} \partial x^{j}}, \quad \text { and so on. }
$$

Consider a stationary, static, spherically symmetric metric of the form

$$
d \vec{s}^{2}=e^{A(r)} d t^{2}-e^{B(r)} d r^{2}-r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right),
$$

where we use units with speed of light $=1$.
(a) Let $x^{1}=t, x^{2}=r, x^{3}=\theta, x^{4}=\phi$ and identify the non-zero contributions to $R_{11}=R_{t t}$.
(b) Use the result of (a) to proof equation (11.4) of the book

$$
R_{t t}=-e^{A-B}\left(\frac{A_{22}}{2}-\frac{A_{2} B_{2}}{4}+\frac{\left(A_{2}\right)^{2}}{4}+\frac{A_{2}}{r}\right) .
$$

