Special and General Relativity PHZ 4601 Fall 2018: Test on Homework Solutions.

1. Twin travel in 2D Minkowski space.

(a) $\beta_{B}^{1}=4 / 5$.
(b) The proper time of B at B_{0}, the end of the first part of its travel, is

$$
\sqrt{(5)^{2}-(4)^{2}}=3
$$

(c) $2 \times 5=10$ is the time on the clock of A when A meets B again.
(d) $2 \times 3=6$ is the time on the clock of B when A meets B again.
(e) We have $\beta_{A}^{2}=-\beta_{B}^{1}=-4 / 5$ for the velocity of A in the inertial frame K_{2}.
(f) The coordinates of B_{0} in K_{2} are $\binom{3}{0}$.

2. Radar Distance.

Let the coordinate times for light-signals from A to B and B to A be $\triangle t_{A \rightarrow B}$ and $\triangle t_{B \rightarrow A}$, respectively. The coordinate round-trip time Δt for a radio echo is the same at A and $B: \triangle t=\Delta t_{A \rightarrow B}+\Delta t_{B \rightarrow A}$. But the radar distance is determined with standard clocks: Radar distance measured at $A: L_{A}=(c / 2) \triangle \tau_{A}=(c / 2) \exp \left(\Phi_{A} / c^{2}\right) \Delta t$ and, similarly, $L_{B}=(c / 2) \triangle \tau_{B}=(c / 2) \exp \left(\Phi_{B} / c^{2}\right) \Delta t$. Therefore,

$$
\frac{L_{A}}{L_{B}}=\frac{\exp \left(\Phi_{A} / c^{2}\right)}{\exp \left(\Phi_{B} / c^{2}\right)}
$$

3. Schwarzschild Metric.

We choose the identification

$$
\begin{aligned}
d \vec{s}^{2} & =a\left(d x^{1}\right)^{2}+b\left(d x^{2}\right)^{2}+\left(d x^{3}\right)^{2}+\left(d x^{4}\right)^{2} \\
& =a(d t)^{2}+b(d r)^{2}+c(d \theta)^{2}+d(d \phi)^{2},
\end{aligned}
$$

respectively, with $a=\exp [+A(r)], b=-\exp [+B(r)], c=-r^{2}, d=-r^{2} \sin ^{2} \theta$. The non-zero derivatives are the

$$
'^{\prime}=\frac{\partial}{\partial x^{2}}=\frac{\partial}{\partial r} \text { and, on } d \text { only, } \frac{\partial}{\partial x^{3}}=\frac{\partial}{\partial \theta} .
$$

Therefore, the non-zero contributions to the Ricci tensor are

$$
R_{t t}=R_{11}=\beta a_{22}-\beta a_{2}\left(\alpha a_{2}+\beta b_{2}-\gamma c_{2}-\delta_{2} d_{2}\right),
$$

where $\alpha, \beta, \gamma, \delta$ are defined by $\alpha=1 / 2 a, \beta=1 / 2 b, \gamma=1 / 2 c, \delta=1 / 2 d$. We have

$$
a^{\prime}=A^{\prime} \exp (+A), \quad b^{\prime}=-B^{\prime} \exp (+B) \quad c^{\prime}=-2 r \quad d^{\prime}=-2 r \sin ^{2} \theta
$$

and $a^{\prime \prime}=A^{\prime \prime} \exp (A)+\left(A^{\prime}\right)^{2} \exp (A)$. Inserting these gives

$$
\begin{aligned}
R_{t t}= & -\exp (A-B) \frac{1}{2}\left(A^{\prime \prime}+A^{\prime 2}\right) \\
& +\exp (A-B) \frac{1}{2} A^{\prime}\left(\frac{1}{2} A^{\prime}+\frac{1}{2} B^{\prime}-\frac{1}{r}-\frac{1}{r}\right) \\
= & -\exp (A-B)\left(\frac{1}{2} A^{\prime \prime}-\frac{1}{4} A^{\prime} B^{\prime}+\frac{1}{4} A^{\prime 2}+A^{\prime} / r\right) .
\end{aligned}
$$

