## Fall 2018 Special and General Relativity (PHZ 4601/560) <br> Final Solutions

## 1. Special Relativity: Electromagnetic invariants.

(a)

$$
\left(E^{\alpha \beta}\right)=\left(\begin{array}{cccc}
0 & -b^{3} & b^{2} & e^{1} \\
b^{3} & 0 & -b^{1} & e^{2} \\
-b^{2} & b^{1} & 0 & e^{3} \\
-e^{1} & -e^{2} & -e^{3} & 0
\end{array}\right) \Rightarrow\left(E_{\alpha \beta}\right)=\left(\begin{array}{cccc}
0 & -b^{3} & b^{2} & -e^{1} \\
b^{3} & 0 & -b^{1} & -e^{2} \\
-b^{2} & b^{1} & 0 & -e^{3} \\
+e^{1} & +e^{2} & +e^{3} & 0
\end{array}\right) .
$$

Therefore,

$$
E_{\alpha \beta} E^{\alpha \beta}=2\left(\vec{b}^{2}-\vec{e}^{2}\right)
$$

(b) $E_{12}=\epsilon_{1234} E^{34}=-E^{34}=+e^{3}, \quad E_{13}=\epsilon_{1324} E^{24}=+E^{24}=-e^{1}$, $E_{13}=\epsilon_{1324} E^{24}=+E^{24}=-e^{1}$, and so on implies

$$
\left({ }^{*} E_{\alpha \beta}\right)=\left(\begin{array}{cccc}
0 & -e^{3} & e^{2} & b^{1} \\
e^{3} & 0 & -e^{1} & b^{2} \\
-e^{2} & e^{1} & 0 & b^{3} \\
-b^{1} & -b^{2} & -b^{3} & 0
\end{array}\right)
$$

(c) Therefore,

$$
{ }^{*} E_{\alpha \beta} E^{\alpha \beta}=4 \vec{b} \cdot \vec{e} .
$$

## 2. Schwarzschild effective potential:

(a) We have $h=r_{e} v_{e}$ where $r_{e}$ is the average distance of the earth from the sun and $v_{e}$ the average velocity of the earth perpendicular to $r_{e}$. Approximating the orbit of the earth by a circle,

$$
v_{e}=\frac{2 \pi r_{e}}{T}=0.9962 \times 10^{-4}
$$

where the period $T$ is one earth year and we use gravitational units with the mass of the sun as unit mass. Multiplying with $r_{e}$, we obtain

$$
h=9962\left[m_{s}\right] .
$$

Second solution for (a): The values of $h$ can also be found from the minimum of $V_{G R}(r)$, which corresponds to the orbit of a circle. Then

$$
0=V_{G R}^{\prime}(r)=\frac{d}{d r} V_{G R}(r)=-\frac{2 h^{2}}{r^{3}}+\frac{2}{r^{2}}+\frac{6 h^{2}}{r^{4}} \Rightarrow h^{2}=\left(\frac{2}{r^{2}}\right) /\left(\frac{2}{r^{3}}-\frac{6}{r^{4}}\right),
$$

and with $r=r_{e}=10^{8}\left[m_{s}\right]$ we get

$$
h \approx r_{e}=10^{4}\left[m_{s}\right] .
$$

The difference between the two results comes from the approximation for $T$.


Newton's classical region.


Schwarzschild singularity region.
(b) The extrema of the Schwarzschild effective potential follow from

$$
0=V_{G R}^{\prime}(r)=\frac{d}{d r} V_{G R}(r)=-\frac{2 h^{2}}{r^{3}}+\frac{2}{r^{2}}+\frac{6 h^{2}}{r^{4}},
$$

where we used $m_{s}=1$. Multiplying with $r^{4}$ gives

$$
0=r^{2}-h^{2} r+3 h^{2}
$$

with the solutions

$$
r_{ \pm}=\frac{h^{2}}{2} \pm \sqrt{\left(\frac{h^{2}}{2}\right)^{2}-3 h^{2}}
$$

where $V_{G R}^{\max }=V_{G R}\left(r_{-}\right)$and $V_{G R}^{\min }=V_{G R}\left(r_{+}\right)$. Continueing with $h=10^{4}\left[m_{s}\right]$, we find
$r_{-}=3\left[m_{s}\right]$ and $r_{+}=10^{8}\left[m_{s}\right]$ with $V_{G R}^{\max }=3.704 \times 10^{6}$ and $V_{G R}^{\min }=-10^{-8}$.
(c) See the first figure (Newton's effective potential $V_{N}$ is included, but was not asked).
(d) See the second figure (Newton's effective potential $V_{N}$ is included, but was not asked).

## 3. Schwarzschild radius and density ( $10 \%$ ).

The Scharzschild radius is

$$
r_{s}=2 m=\frac{8 \pi}{3} r^{3} \rho \Rightarrow R_{0}=\frac{8 \pi}{3} R_{0}^{3} \rho \Rightarrow R_{0}^{2}=\frac{3}{8 \pi \rho}
$$

and $r_{S}>R$ for $R>R_{0}$, because $r_{s}$ increases $\sim R^{3}$, i.e., faster than $R$. This rules out a minimum at $r_{s}=R_{0}$ :

$$
r_{s}-R=\frac{8 \pi}{3} \rho R^{3}-R=\frac{8 \pi}{3} \rho R\left(R^{2}-\frac{3}{8 \pi \rho}\right)=\frac{8 \pi}{3} \rho R\left(R^{2}-R_{0}^{2}\right) .
$$

## 4. Einstein's equations.

(a) We have

$$
R_{\mu}^{\mu}-\frac{1}{2} g_{\mu}^{\mu} R=-\kappa T_{\mu}^{\mu} \Rightarrow R-2 R=-\kappa T \Rightarrow R=\kappa T
$$

and, therefore,

$$
R_{\mu \nu}-\kappa \frac{1}{2} g_{\mu \nu} T=-\kappa T_{\mu \nu} \Rightarrow R_{\mu \nu}=-\kappa\left(T_{\mu \nu}-\frac{1}{2} g_{\mu \nu} T\right)
$$

(b) In vacuum we have

$$
R_{\mu}^{\mu}-\frac{1}{2} g_{\mu}^{\mu} R+g_{\mu}^{\mu} \Lambda=0 \Rightarrow R-2 R+4 \Lambda=0 \Rightarrow R=4 \Lambda,
$$

i.e., $n=4$.

