Special and General Relativity PHZ 4601 Fall 2018: Midterm Solutions.

1. An astrophysical observation (redshift):

The equation for the redshift is

$$
\begin{gathered}
\lambda^{\prime}=\lambda \sqrt{\frac{1+\beta}{1-\beta}} \Rightarrow\left(\frac{\lambda^{\prime}}{\lambda}\right)^{2}=\frac{1+\beta}{1-\beta} \\
\left(\frac{\lambda^{\prime}}{\lambda}\right)^{2}-\beta\left(\frac{\lambda^{\prime}}{\lambda}\right)^{2}=1+\beta \\
\left(\frac{\lambda^{\prime}}{\lambda}\right)^{2}-1=\beta\left[1+\left(\frac{\lambda^{\prime}}{\lambda}\right)^{2}\right] \Rightarrow \beta=\frac{\left(\lambda^{\prime} / \lambda\right)^{2}-1}{\left(\lambda^{\prime} / \lambda\right)^{2}+1} .
\end{gathered}
$$

With $\lambda^{\prime}=(729.2[n m]) m^{2} /\left(m^{2}-4\right)$ given and from Quantum Mechanics books $\lambda=$ $(364.56[n m]) m^{2} /\left(m^{2}-4\right)$ we find $\lambda^{\prime} / \lambda=2$ and, hence,

$$
\beta=\frac{v}{c}=\frac{3}{5}=0.6
$$

2. Light signals and travel in two inertial frames:

FIG. 1: Minkowski space in which observer B is at rest and observer A moves with speed $4 / 5$ in negative x direction.

We use natural units, $c=1$, and express everything in seconds, omitting $[s]$ in the following.
(a) In the rest frame S of A the coordinates of A_{1} are $(t, x)=(15,0)$. In the rest frame $S^{\prime \prime}$ of B we have $15=\tau=\sqrt{t^{\prime 2}-x^{\prime 2}}$ for the proper time of A at this space-time point and $x^{\prime}=-4 t^{\prime} / 5$. Putting these equations together, we find:

$$
15=\sqrt{\left(t^{\prime}\right)^{2}-\left(4 t^{\prime} / 5\right)^{2}}=3 t^{\prime} / 5 \quad \Rightarrow \quad t^{\prime}=25 \quad \Rightarrow \quad\left(t^{\prime}, x^{\prime}\right)=(25,-20) .
$$

Alternatively, we may perform the Lorentz transformations

$$
t^{\prime}=\gamma t-\beta \gamma x \quad x^{\prime}=\gamma x-\beta \gamma t
$$

Now, $\beta=4 / 5$ and $\gamma=1 / \sqrt{1-(4 / 5)^{2}}=5 / 3, \beta \gamma=4 / 3$. Hence, $(t, x)=(15,0)$ transforms into

$$
t^{\prime}=5 t / 3=25, \quad x^{\prime}=-4 t / 3=-20 \quad \text { i.e., } \quad\left(t^{\prime}, x^{\prime}\right)=(25,-20) .
$$

(b) In S the coordinates of B_{0} are the meeting point of the straight lines $x=4 t / 5$ and $x=t-15$ for $t \geq 15$. The solution is $(t, x)=(75,60)$ and the proper time of B at this point is $\tau=\sqrt{t^{2}-x^{2}}=45$. In the S^{\prime} frame we have by its definition $x^{\prime}=0$ for B and the space-time point B_{0} becomes $\left(t^{\prime}, x^{\prime}\right)=(45,0)$.
(c) In S the space-time position A_{2} is at $(t, x)=(135,0)$. We can deal with this like before with $(t, x)=(15,0)$:

$$
135=\sqrt{\left(t^{\prime}\right)^{2}-\left(4 t^{\prime} / 5\right)^{2}}=3 t^{\prime} / 5 \Rightarrow t^{\prime}=225, \quad x^{\prime}=-4 t^{\prime} / 5=-180 .
$$

Alternatively, we may perform the Lorentz transformations. Now,

$$
t^{\prime}=5 t / 3=225, \quad x^{\prime}=-4 t / 3=-180 \quad \text { i.e., } \quad\left(t^{\prime}, x^{\prime}\right)=(225,-180)
$$

(d) See the figure.

(e) Space travel (Rindler problem 2.9):

$$
\begin{gathered}
\triangle x=\beta \Delta t=8 \\
\Delta \tau=8=\frac{\Delta t}{\gamma}=\Delta t \sqrt{1-\beta^{2}}=8 \frac{\sqrt{1-\beta^{2}}}{\beta}
\end{gathered}
$$

Therefore,

$$
1=\frac{\sqrt{1-\beta^{2}}}{\beta}=\frac{1-\beta^{2}}{\beta^{2}} \Rightarrow 2 \beta^{2}=1 \Rightarrow \beta=\frac{1}{\sqrt{2}}=0.7071 \ldots
$$

