1

Special and General Relativity (PHZ 4601/5606) Fall 2017 Solutions Set 5

18. Electromagnetic field tensor in \vec{E} and \vec{B} fields.

A. From the J^4 component we get

$$\partial_4 E^{44} + \partial_1 E^{14} + \partial_2 E^{24} + \partial_3 E^{34} = \frac{4\pi}{c} J^4 = 4\pi \rho = \nabla \cdot \vec{e} = \partial_1 e^1 + \partial_2 e^2 + \partial_3 e^3.$$

Therefore, $E^{44}=0$ by anti-symmetry, $E^{14}=e^1$, $E^{24}=e^2$ and $E^{34}=e^3$. From the J^1 component we get

$$\partial_4 E^{41} + \partial_1 E^{11} + \partial_2 E^{21} + \partial_3 E^{31} = \frac{4\pi}{c} J^1 = \partial_2 b^3 - \partial_3 b^2 - \partial_4 e^1.$$

Therefore, $E^{41}=-e^1$ consistent with $E^{14}=e^1$, $E^{11}=0$ by anti-symmetry, $E^{21}=b^3$ and $E^{31}=-b^2$.

From the J^2 component we get

$$\partial_4 E^{42} + \partial_1 E^{12} + \partial_2 E^{22} + \partial_3 E^{32} = \frac{4\pi}{c} J^2 = \partial_3 b^1 - \partial_1 b^3 - \partial_4 e^2$$
.

Therefore, $F^{42} = -e^2$, $E^{12} = -b^3$ both consistent with anti-symmetry, $E^{22} = 0$ by anti-symmetry and (new) $E^{32} = b^1$.

Using anti-symmetry all components are now determined and the $F^{\alpha\beta}$ field tensor reads

$$(E^{\alpha\beta}) = \begin{pmatrix} 0 & -b^3 & b^2 & e^1 \\ b^3 & 0 & -b^1 & e^2 \\ -b^2 & b^1 & 0 & e^3 \\ -e^1 & -e^2 & -e^3 & 0 \end{pmatrix}.$$

The remaining equations from $\beta=3$ are not needed, but can be used for consistency checks.