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Kepler problem as discussed in class.

PACS numbers:

I. SOLUTION OF THE KEPLER PROBLEM
FOR NUMERICAL IMPLEMENTATION

The purpose of this section is to cast the analytical
solution of the Kepler problem into a form, which allows
for easy implementation into a computer program (here
done in Fortran). The final solutions are translated back
to the initially given inertial system. There are many
treatments of the Kepler problem, for instance [1, 2]. We
follow to some extent by Landau and Lifschiz.

A. Central potential problem

Let t be the time and the masses be m1 and m2.
In a frame Σ defined by Cartesian orthonormal vec-
tors ê1, ê2, ê3 positions and velocities of the masses mi,
(i = 1, 2) are given by:

~ri(t) =

x1
i (t)
x2
i (t)
x3
i (t)

 and ~vi(t) =

ẋ1
i (t)
ẋ2
i (t)
ẋ3
i (t)

 (1)

where the dot denotes the time derivative. For positions
and velocities the initial conditions at time t0 are

~ri(t0) and ~vi(t0) , i = 1, 2 (2)

in the frame Σ. The computer program will calculate
~ri(t) and ~vi(t), i = 1, 2 for any desired time t.

We denote the total mass by

M = m1 +m2 , (3)

the Center of Mass (CM) position and velocity are de-
fined by

~rcm(t) =
m1 ~r1(t) +m2 ~r2(t)

M
, (4)

~vcm(t) =
m1 ~v1(t) +m2 ~v2(t)

M
. (5)

Due to momentum conservation one finds

~vcm(t) = ~vcm(t0) and (6)

~rcm(t) = ~rcm(t0) + ~vcm(t0)4t , 4t = (t− t0) . (7)

Defining the difference coordinates and velocities by

~r12(t) = ~r1(t)− ~r2(t) , (8)

~v12(t) = ~v1(t)− ~v2(t) , (9)

the positions of the particles are

~r1(t) = ~rcm(t) +
m2 ~r12(t)

M
, (10)

~r2(t) = ~rcm(t)− m1 ~r12(t)

M
. (11)

These equations show that the CM is located in between
the particles on the straight line connecting them. Equa-
tions for the velocities are defined by taking the time
derivatives.

So, the task has become to solve the equations of mo-
tion for the difference coordinates and to implement the
solution numerically. In the following we used the nota-
tion

r12 = |~r12(t)| . (12)

For a central potential U(r12) the energy

E =
m1 ~v1(t)2

2
+
m2 ~v2(t)2

2
+ U(r12) (13)

is conserved, i.e., does not depend on the time t.
As the difference coordinate ~r12(t) stays invariant un-

der transformation to the CM frame Σ′ defined by

~r
′

cm(t) = 0 . (14)

We can calculate its time dependence in the CM system
and still use Eq. (10) and (11) to find the time depen-
dence of the original coordinates. In the CM systems
these equations simplify to

~r
′

1(t) =
m2 ~r

′

12

M
and ~r

′

2(t) = −m1 ~r
′

12

M
. (15)

In the following we drop the primes and continue to work
in the CM frame (we shall use the primes for yet another
frame soon).

Inserting the derivatives of equation (15) (without
primes) into the energy conservation (13), we find

Ecm =
µ~v12(t)2

2
+ U(r12) where µ =

m1m2

M
. (16)

µ is called reduced mass. To simplify the notation, we
drop the subscript 12:

~r(t) = ~r12(t) and ~v(t) = ~v12(t) . (17)
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With ~r(t0) and ~v(t0) given, we want to find ~r(t) for the
cental potential problem (16). Besides momentum and
energy the angular momentum is conserved:

~L = ~r1 × ~p1 + ~r2 × ~p2 (18)

where ~pi = mi~v, i = 1, 2 are the momenta of the masses.
Using (15) we have

~L = µ~r(t)× ~v(t) = µ~r(t0)× ~v(t0) . (19)

We deal with ~L = 0 later. Assuming ~L 6= 0, the motion
takes place in the plane spanned by ~r(t0) and ~v(t0) and it
is convenient to describe to describe in in a new coordi-
nate frame Σ′ defined by Cartesian orthonormal vectors
ê′1, ê

′
2, ê

′
3 with

ê′1 =
~r(t0)

|~r(t0)|
, (20)

ê′2 =
~v(t0)− [~v(t0) · ê′1] ê′1
|~v(t0)− [~v(t0) · ê′1] ê′1|

, (21)

ê′3 = L̂ =
~L

L
with L = |~L| . (22)

By definition of the angular momentum this is a right-
handed frame. In this frame the absolute value of the
angular momentum reads

L = µ r(t)2 φ̇
′
(t) , (23)

where the azimuth angle φ′ is defined by

x′(t) = r(t) cos[φ′(t)] , (24)

y′(t) = r(t) sin[φ′(t)] . (25)

Defining the effective potential by

Ueff(r) = U(r) +
L2

2µ r(t)2
, (26)

where L2/ [2µr(t)2] is called centrifugal energy, the en-
ergy conservation (16) becomes

Ecm =
µ

2
ṙ(t)2 + Ueff(r) . (27)

Separation of variables yields

dt = dr

√
µ

2 [Ecm − Ueff(r)]
,

4t = t− t0 =

∫ r(t)

r(t0)

dr

√
µ

2 [Ecm − Ueff(r)]
. (28)

To get φ′(t) we use (23):

dφ′ =
Ldt

µ r2
=

Ldr

r2
√

2µ [Ecm − Ueff(r)]

4φ′ = φ′(t)− φ′(t0) (29)

=

∫ r(t)

r(t0)

Ldr

r2
√

2µ [Ecm − Ueff(r)]
,

where due to the choice of the Σ′ coordinate frame of
Eq. (20) to (22) we have

φ′(t0) = 0 . (30)
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FIG. 1: Potential and effective potential for the Kepler prob-
lem.

B. Kepler problem

We specialize now to the gravitational potential

U(r) = −α
r

with α = Gm1m2 . (31)

The effective potential becomes

Ueff(r) = −α
r

+
L2

2µ r(t)2
. (32)

An example is shown in Fig. 1. For Ecm ≥ 0 the distance
between the masses escapes to infinity, while for Ecm <
0 it is confined between rmin and rmax. There are no
solutions for Ecm < Umin

eff with

Umin
eff = Ueff(r0

min) = −α
2

2

µ

L2
, r0

min =
L2

αµ
. (33)

At r0
min the orbit is a circle. For (31) the solution of the

integral (29) is elementary

φ′(t) = arccos

(
L/r(t)− µα/L√
2µEcm + µ2α2/L2

)

− arccos

(
L/r(t0)− µα/L√
2µEcm + µ2α2/L2

)
(34)

We map on the coordinate conventions of the literature
[1, 2] in which the rmin position, called perihelion or peri-
center, is at φ = 0. This defines the the azimuth angle

φ(t) = arccos

(
L/r(t)− µα/L√
2µEcm + µ2α2/L2

)
, (35)

so that

φ′(t) = φ(t)− φ(t0) (36)
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holds for the previously introduced φ′(t). The angle φ(t)
is defined with respect to a coordinate system, which we
call Σl (l for literature). It is rotated with respect to Σ′

by φ(t0) about the common ê′3 axis.
We can write Eq. (35 as

cos[φ(t)] =
L/r(t)− µα/L

(µα/L)
√

1 + 2EcmL2/(µα2)
. (37)

With the definitions of the parameter p, 2p is called the
latus rectum, and the eccentricity e,

p =
L2

µα
and e =

√
1 +

2Ecm L2

µα2
, (38)

the orbit in Σl becomes

p

r(t)
= 1 + e cos[φ(t)] or r(t) =

p

1 + e cos[φ(t)]
. (39)

This is a conic section with the coordinate origin in a
focal point. The shortest distance from the focal point is

rmin =
p

1 + e
, (40)

which corresponds to the pericenter. For Umin
eff < Ecm <

0 the orbit is an ellipse and the largest distance from the
focal point is

rmax =
p

1− e
, (41)

which is corresponds to the apocenter. The turning points
rmin and rmax of the orbit are also called apsides. They
are indicated in Fig. 1. The large half-axis is

a =
p

1− e2
=

α

2|Ecm|
(42)

and the small half-axis

b =
p√

1− e2
=

L√
2µ|Ecm|

. (43)

The ellipse becomes a circle for e = 0 (Ecm = Umin
eff ). The

position and velocity vectors with be orthogonal ~r ·~v = 0,
and we have a relation between their magnitudes. With

r0 = r(t0) = |~r(t0)| , (44)

v0 = v(t0) = |~v(t0)| , (45)

the relation Ecm = Umin
eff yields:

µ

2
(v0)2 − α

r0
= −α

2

2

1

µ (r0)2(v0)2
, (46)

(v0)4 − 2α

µ r0
(v0)2 +

α2

µ2(r0)2
= 0 . (47)

The argument of the ±√ part of the solution turns out
to be zero, so that we end up with the unique result

v0 =

√
α

µ r0
(48)
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FIG. 2: Elliptical and hyperbolic orbits corresponding to the
initial conditons of table I.

and ~v0 · ~r0 = 0.

For Ecm > 0 (e > 1) the orbits are hyperbolic and
escape to infinity for the two solutions for the equation
1 + e cos(φ∞) = 0. For Ecm = 0 the orbit is parabolic
and φ∞ = π.

Masses Initial Positions Initial Velocities

# i mi x1
i,0 x2

i,0 x3
i,0 ẋ1

i,0 ẋ2
i,0 ẋ3

i,0

1 1 0.651 0.585 -0.238 -0.755 -0.828 -0.865 -0.726

2 0.931 -0.096 0.000 0.357 -0.209 0.107 -0.660

2 1 1.510 0.460 -0.359 -0.234 -0.918 -0.941 -0.323

2 0.126 -0.066 -0.090 -0.809 0.789 0.788 0.620

3 1 1.328 -0.125 0.898 0.194 -0.452 0.172 0.125

2 1.999 -0.449 -0.085 -0.454 -0.976 -0.990 -0.968

4 1 0.180 0.204 -0.968 -0.753 -0.811 -0.632 0.784

2 1.560 -0.889 -0.979 0.854 -0.323 -0.774 -0.533

TABLE I: Examples of initial conditions corresponding to or-
bits shown in Fig. 2.

In Fig. 2 we give examples of orbits in the Σl frame,
which correspond to the initial conditions and velocities
compiled in table I. Crosses in the figure indicate the
corresponding initial positions in the Σl frame.
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