Special and General Relativity (PHZ 4601/560 Fall 2017) Test on Homework

1. Time dilation for a satellite from special relativity (neglect gravitational effects) (20\%). The circular orbit of a satellite is described by its radius R and angular velocity ω. Use special relativity to calculate the ratio of the proper time interval $d \tau$ of a clock on the satellite over the time interval $d t$ of the inertial frame in which the center of the orbit is at rest.

Use $d \tau$ for a clock on the satellite and $d t$ for a clock fixed on the equator of the earth. Calculate the numerical value $1-d \tau / d t$ for a satellite that orbits above the equator at an altitude of $160[\mathrm{~km}]$. Use $g=9.81\left[\mathrm{~m} / \mathrm{s}^{2}\right]$ for the gravitational acceleration and $R=6378[\mathrm{~km}]$ for the radius of the earth.
2. Flat 2D plane mapped by the standard polar coordinates, $x=r \cos \theta, y=r \sin \theta$ (60\%).
(a) Write down $d s^{2}$.
(b) What are the coefficients $g_{i j}$?
(c) What are the coefficients $g^{i j}$?
(d) Calculate the Christoffel symbols $\Gamma_{\mu \nu}^{\lambda}=\frac{1}{2} g^{\lambda \gamma}\left(g_{\gamma \mu, \nu}+g_{\gamma \nu, \mu}-g_{\mu \nu, \gamma}\right)$ for this system.
(e) Using

$$
\ddot{x}^{\lambda}+\Gamma_{\mu \nu}^{\lambda} \dot{x}^{\mu} \dot{x}^{\nu}=0
$$

derive the two coupled, second-order differential equations that describe the motion of a free particle in this system.
3. Is $t=v a r, x_{i}$ fixed, geodesic? (20\%).

Consider the spacetime metric $d \vec{s}^{2}=d t^{2}-d l^{2}$, where $d l^{2}$ is an arbitrary and possibly time-dependent metric. Are coordinate lines with t variable and the other coordinates fixed at constant values geodesic? Hint: Investigate whether the geodesic equations of the Lagrangian

$$
L=\dot{t}^{2}-g_{i j} \dot{x}^{i} \dot{x}^{j}
$$

allow for the proposed solutions.

