Special and General Relativity (PHZ 4601/560 Fall 2017) Test on Homework

1. Time dilation for a satellite from special relativity (neglect gravitational effects) (20%).

The circular orbit of a satellite is described by its radius R and angular velocity ω . Use special relativity to calculate the ratio of the proper time interval $d\tau$ of a clock on the satellite over the time interval dt of the inertial frame in which the center of the orbit is at rest.

Use $d\tau$ for a clock on the satellite and dt for a clock fixed on the equator of the earth. Calculate the numerical value $1 - d\tau/dt$ for a satellite that orbits above the equator at an altitude of 160 [km]. Use $g = 9.81 [m/s^2]$ for the gravitational acceleration and R = 6378 [km] for the radius of the earth.

- 2. Flat 2D plane mapped by the standard polar coordinates, $x = r \cos \theta$, $y = r \sin \theta$ (60%).
 - (a) Write down ds^2 .
 - (b) What are the coefficients g_{ij} ?
 - (c) What are the coefficients g^{ij} ?
 - (d) Calculate the Christoffel symbols $\Gamma^{\lambda}_{\mu\nu} = \frac{1}{2} g^{\lambda\gamma} \left(g_{\gamma\mu,\nu} + g_{\gamma\nu,\mu} g_{\mu\nu,\gamma} \right)$ for this system.
 - (e) Using

$$\ddot{x}^{\lambda} + \Gamma^{\lambda}_{\mu\nu} \dot{x}^{\mu} \dot{x}^{\nu} = 0$$

derive the two coupled, second-order differential equations that describe the motion of a free particle in this system.

3. Is t = var, x_i fixed, geodesic? (20%).

Consider the spacetime metric $d\vec{s}^2 = dt^2 - dl^2$, where dl^2 is an arbitrary and possibly time-dependent metric. Are coordinate lines with t variable and the other coordinates fixed at constant values geodesic? Hint: Investigate whether the geodesic equations of the Lagrangian

$$L = \dot{t}^2 - g_{ij} \, \dot{x}^i \, \dot{x}^j$$

allow for the proposed solutions.