Special and General Relativity (PHZ 4601/560 Fall 2017) Solutions Midterm October 20.

FIG. 1: Minkowski space in which observer B is at rest and observer A moves with speed $4 c / 5$ in negative x direction.

1. Light signals and travel in two inertial frames.

We use natural units, $c=1$, and express everything in seconds.
(a) In the rest frame S of A the coordinates of A_{1} are $(t, x)=(15,0)$. In the rest frame S^{\prime} of B we have $15=\tau=\sqrt{t^{\prime 2}-x^{\prime 2}}$ for the proper time of A at this space-time point and $x^{\prime}=-4 t^{\prime} / 5$. Putting these equations together, we find:

$$
15=\sqrt{\left(t^{\prime}\right)^{2}-\left(4 t^{\prime} / 5\right)^{2}}=3 t^{\prime} / 5 \quad \Rightarrow \quad t^{\prime}=25 \quad \Rightarrow \quad\left(t^{\prime}, x^{\prime}\right)=(25,-20)
$$

(b) In S the coordinates of B_{0} are the meeting point of the straight line $x=4 t / 5$ and $x=t-15$ for $t \geq 15$. The solution is $(t, x)=(75,60)$ and the proper time of B at this point is $\tau=\sqrt{t^{2}-x^{2}}=45$. In the S^{\prime} frame we have by its definition $x^{\prime}=0$ for B and the space-time point B_{0} becomes $\left(t^{\prime}, x^{\prime}\right)=(45,0)$.
(c) In S the space-time position A_{2} is at $(t, x)=(135,0)$. We can deal with this like before with $(t, x)=(15,0)$:

$$
135=3 t^{\prime} / 5 \quad \Rightarrow \quad t^{\prime}=225, \quad x^{\prime}=-4 t^{\prime} / 5=-180
$$

Alternatively, we may perform the Lorentz transformations

$$
t^{\prime}=\gamma t-\beta \gamma x \quad x^{\prime}=\gamma x-\beta \gamma t
$$

Now, $\beta=4 / 5$ and $\gamma=1 / \sqrt{1-(4 / 5)^{2}}=5 / 3, \beta \gamma=4 / 3$. Hence, $(t, x)=(135,0)$ transforms into

$$
t^{\prime}=5 t / 3=225, \quad x^{\prime}=-4 t / 3=-180 \quad \text { i.e., } \quad\left(t^{\prime}, x^{\prime}\right)=(225,-180)
$$

(d) See the figure.

2. Spacetrip.

We only consider the first quarter (1 year) of the flight. The other results for t are the same due to symmetry. With $\beta=v / c$ the acceleration in the rest frame is given by

$$
\frac{g}{c}=\frac{d \beta}{d \tau}=\frac{d \zeta}{d \tau}
$$

where ζ is the rapidity. As rapidities are additive, the following equation holds in the earth frame:

$$
d \zeta(\tau)=\frac{d \zeta}{d \tau} d \tau=\frac{g}{c} d \tau
$$

With the initial condition $\zeta(0)=0$ this integrates to

$$
\zeta=\int_{0}^{\zeta} d \zeta^{\prime}=\frac{g}{c} \int_{0}^{\tau} d \tau^{\prime}=\frac{g}{c} \tau .
$$

The age of the twin on earth follows from $d t^{\prime}=\cosh (\zeta) d \tau^{\prime}$:

$$
\int_{0}^{t} d t^{\prime}=t=\int_{0}^{\tau} \cosh \left[\zeta\left(\tau^{\prime}\right)\right] d \tau^{\prime}=\int_{0}^{\tau} \cosh \left[\frac{g}{c} \tau^{\prime}\right] d \tau^{\prime}=\frac{c}{g} \sinh \left[\frac{g}{c} \tau\right] .
$$

Inserting $\tau=1$ year $=365 \times 24 \times 3600[\mathrm{~s}], c=3 \times 10^{8}[\mathrm{~m} / \mathrm{s}]$ and $g=9.81\left[\mathrm{~m} / \mathrm{s}^{2}\right]$, we find $t=1.187$ years for a quarter of the trip and 4.748 years for the entire trip.

Distance traveled.
Seen from earth: maximum distance $=2 x_{1}$ with

$$
\begin{aligned}
x_{1} & =\int_{0}^{x_{1}} d x=\int_{0}^{t_{1}} v(t) d t=\int_{0}^{\tau_{1}} \cosh [\zeta(\tau)] v(\tau) d \tau \\
& =c \int_{0}^{\tau_{1}} \cosh \left(\frac{g \tau}{c}\right) \tanh \left(\frac{g \tau}{c}\right) d \tau=c \int_{0}^{\tau_{1}} \sinh \left(\frac{g \tau}{c}\right) d \tau=\frac{c^{2}}{g}\left[\cosh \left(\frac{g \tau_{1}}{c}\right)-1\right] .
\end{aligned}
$$

Numerical values: $x_{1}=0.563$ light years, maximum distance $=1.126$ light years.

