## Special and General Relativity (PHZ 4601/560 Fall 2017) <br> Solutions Test on Homework November 20.

1. Proper time under rotation.

$$
c^{2} d \tau^{2}=c^{2} d t^{2}-\omega^{2} R^{2} d t^{2} \Rightarrow \frac{d \tau}{d t}=\sqrt{1-\frac{\omega^{2} R^{2}}{c^{2}}} \approx 1-\frac{1}{2} \frac{\omega^{2} R^{2}}{c^{2}}
$$

Now $g=v^{2} / R=\omega^{2} R$, where $g=9.81\left[\mathrm{~m} / \mathrm{s}^{2}\right]$ and $v$ is the velocity of the satellite. For $R=(6,378+160)[\mathrm{km}]$ (equatorial radius plus $160[\mathrm{~km}]$ ) we get $\omega=0.0012249\left[\mathrm{~s}^{-1}\right]$, which correpsonds to a period of $T=2 \pi / \omega=85.5$ [minutes]. For the time dilation we find

$$
1-\frac{d \tau}{d t}=\frac{1}{2}\left(\frac{\omega R}{c}\right)^{2}=0.356321 \times 10^{-9} .
$$

Compared to this the time dilation of a clock on the equator is negligible:

$$
1-\frac{d \tau}{d t}=\frac{1}{2}\left(\frac{\omega R}{c}\right)^{2}=0.119517 \times 10^{-11}
$$

2. See sol26.pdf of the Homework, Set 8.
3. Are $t=$ var, $x^{i}=$ const lines geodesics?

The metric is $d \vec{s}^{2}=d t^{2}-d l^{2}$ and $d x^{i}=0$ holds for $t=v a r$. Hence, $d s^{2}=d t^{2} \Rightarrow s=t$. So, $\dot{t}=1, \ddot{t}=0$ and $\dot{x}^{i}=0, \ddot{x}^{i}=0$.

Now, let us check the geodesic equations of $L=\dot{t}^{2}-g_{i j} \dot{x}^{i} \dot{x}^{j}$ :

$$
\frac{d}{d t} \frac{\partial L}{\partial \dot{t}}-\frac{\partial L}{\partial t}=0 \Rightarrow 2 \ddot{t}-g_{i j, 4} \dot{x}^{i} \dot{x}^{j}=0
$$

which is solved by $\ddot{t}=0, \dot{x}^{i}=0$. Next,

$$
\frac{d}{d t} \frac{\partial L}{\partial \dot{x}^{i}}-\frac{\partial L}{\partial x^{i}}=0 \Rightarrow-2 \frac{d}{d t}\left(g_{i j} \dot{x}^{j}\right)-g_{j k, i} \dot{x}^{j} \dot{x}^{k}=0 .
$$

The geodesic equations are satisfied.

