Special and General Relativity (PHZ 4601/560 Fall 2017)

Solutions Test on Homework November 20.

1. Proper time under rotation.
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Now g = v?/R = w? R, where g = 9.81 [m/s*] and v is the velocity of the satellite. For
R = (6,378 + 160) [km] (equatorial radius plus 160 [km]) we get w = 0.0012249 [s~],

which correpsonds to a period of T' = 27/w = 85.5 [minutes|. For the time dilation

we find )
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Compared to this the time dilation of a clock on the equator is negligible:
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2. See s0126.pdf of the Homework, Set 8.

3. Are t = var, x* = const lines geodesics?

The metric is d5? = dt? —dl? and dz® = 0 holds for ¢t = var. Hence, ds?> = dt* = s = t.

So,t=1,t=0and &' =0, & = 0.

Now, let us check the geodesic equations of L = {2 — g;; &% i/
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which is solved by ¢ = 0, #* = 0. Next,
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The geodesic equations are satisfied.



