December 1, 2018 17:24

1

Special and General Relativity (PHZ 4601/5606) Fall 2018 Solutions

Set 6

17. Electromagnetic field tensor in \vec{e} and \vec{b} fields.

A. From the J^4 component we get

$$E^{44}_{,4} + E^{14}_{,1} + E^{24}_{,2} + E^{34}_{,3} = \frac{4\pi}{c} J^4 = 4\pi \rho = \nabla \cdot \vec{e} = \frac{\partial e^1}{\partial x^1} + \frac{\partial e^2}{\partial x^2} + \frac{\partial e^3}{\partial x^3} \,.$$

Therefore, $E^{14} = e^1$, $E^{24} = e^2$, $E^{34} = e^3$, and $E^{44} = 0$ by anti-symmetry. From the J^1 component we get

$$E^{41}_{,4} + E^{11}_{,1} + E^{21}_{,2} + E^{31}_{,3} = \frac{4\pi}{c} J^1 = \frac{\partial b^3}{\partial x^2} - \frac{\partial b^2}{\partial x^3} - \frac{\partial e^1}{\partial x^4}$$

Therefore, $E^{41} = -e^1$ consistent with $E^{14} = e^1$, $E^{11} = 0$ by anti-symmetry, $E^{21} = b^3$ and $E^{31} = -b^2$. From the J^2 component we get

$$E^{42}_{,2} + E^{12}_{,1} + E^{22}_{,2} + E^{32}_{,3} = \frac{4\pi}{c} J^2 = \frac{\partial b^1}{\partial x^3} - \frac{\partial b^3}{\partial x^3} - \frac{\partial e^2}{\partial x^4}$$

Therefore, $E^{42} = -e^2$, $E^{12} = -b^3$ both consistent with anti-symmetry, $E^{22} = 0$ by anti-symmetry and (new) $E^{32} = b^1$.

Using anti-symmetry all components are now determined and the $E^{\alpha\beta}$ field tensor reads

$$(E^{\alpha\beta}) = \begin{pmatrix} 0 & -b^3 & b^2 & e^1 \\ b^3 & 0 & -b^1 & e^2 \\ -b^2 & b^1 & 0 & e^3 \\ -e^1 & -e^2 & -e^3 & 0 \end{pmatrix} .$$

The remaining equations from $\beta = 3$ are not needed, but can be used for consistency checks.