From the Appendix of Rindler Ricci tensor for a diagonal metric.

The appendix of Rindler (p.419-421) deals with the metric

$$d\vec{s}^2 = a (dx^1)^2 + b (dx^2)^2 + c (dx^3)^2 + d (dx^4)^2,$$
(1)

where a, b, c, d are functions of the coordinates. Further notation is

$$\alpha = \frac{1}{2a}, \quad \beta = \frac{1}{2b}, \quad \gamma = \frac{1}{2c}, \quad \delta = \frac{1}{2d},$$
 (2)

and

$$a_i = \frac{\partial a}{\partial x^i}, \quad a_{ij} = \frac{\partial^2 a}{\partial x^i \partial x^j}, \text{ and so on,}$$
 (3)

where we allow i, j = 1, 2, 3, 4. From the definitions of the Christoffel symbols

$$\Gamma_{ijk} = \frac{1}{2} (g_{ij,k} + g_{ik,j} - g_{jk,i}) , \quad \Gamma^{i}_{jk} = g^{ih} \Gamma_{hjk}$$
 (4)

[Rindler (10.13) and (10.14), p.206] one finds

$$\Gamma^{1}_{23} = 0, \quad \Gamma^{1}_{22} = -\alpha b_1, \quad \Gamma^{1}_{1i} = \alpha a_i.$$
 (5)

From these trhee typical Γ s all other can be obtained by the obvious permutations. For example, $\Gamma^2_{33} = -\beta c_2$, $\Gamma^4_{44} = -\delta d_2$.

After calculating the Riemann curvature tensor first, the Ricci tensor R_{ij} as defined by Rindler (10.68), p.219 becomes

$$R_{11} = + \beta a_{22} + \gamma a_{33} + \delta a_{44}$$

$$+ \beta b_{11} + \gamma c_{11} + \delta d_{11}$$

$$- \beta^{2} b_{1}^{2} - \gamma^{2} c_{1}^{2} - \delta^{2} d_{1}^{2}$$

$$-\alpha a_{1} (+ \beta b_{1} + \gamma c_{1} + \delta d_{1})$$

$$-\beta a_{2} (\alpha a_{2} + \beta b_{2} - \gamma c_{2} - \delta d_{2})$$

$$-\gamma a_{3} (\alpha a_{3} - \beta b_{3} + \gamma c_{3} - \delta d_{3})$$

$$-\delta a_{4} (\alpha a_{4} - \beta b_{4} - \gamma c_{4} + \delta d_{4})$$

$$(6)$$

$$R_{12} = + \gamma c_{12} + \delta d_{12} - \gamma^{2} c_{1} c_{2} - \delta^{2} d_{1} d_{2} - \alpha \beta a_{2} c_{1} - \alpha \delta a_{2} d_{1} - \beta \gamma b_{1} c_{2} - \beta \delta b_{1} d_{2}$$

$$(7)$$