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Approximation of Pi vs. # of Trials

3.14159

3.141595

3.1416

3.141605

3.14161

3.141615

5 10 15 20 25 30 35 40 45 50

# Trials (billions)

A
pp

ro
xi

m
at

io
n 

of
 P

i

Approximation
Log. (Approximation)

Applied Monte Carlo Simulations to Particle PhysicsApplied Monte Carlo Simulations to Particle Physics
Jonathan J. Senn

Stoneman Douglas High School
Joseph P. Wilson

Lake Brantley High School

Introduction
Prior to the 1980s, high-energy physics had little to do 

with computational science, but now, through Monte Carlo 
simulations, scientists can model natural systems with random 
number generation.

This project deals primarily with simulating spins in a  
one-dimensional lattice.  A lattice can resemble a string or loop 
of beads, or a higher dimensional grid of particles.  In this case, 
the lattice resembles a string of particles, each with an 
electromagnetic ‘spin’ which can take on certain values; each 
spin has two allowed values, or states, for each particle. The 
potential energy of the lattice can be determined based upon the 
interaction of spins and their nearest neighbors.  Each lattice 
has a particular boundary condition (BC); the two that are 
analyzed in this project are the open (linear) and periodic 
(circular) boundary conditions. 

Hypothesis
Utilizing computer-based Monte Carlo methods, the  
algorithms will generate data sets in statistical agreement with 
the analytically calculated physics models.

Outline of Procedures
1. Using the Marsaglia Pseudo-Random Number generator, the 

algorithm creates a configuration of spins (+ or -) on a one 
dimensional lattice grid.

2. Compare each spin with that of its neighbors.  If the spins are 
the same, then increment the total energy of the system by 
one; otherwise decrement the energy by one.  Repeat for 
every combination of two adjacent spins.

3. Divide the total energy by the number of lattice points to 
calculate the energy per spin.

4. Perform many ‘sweeps’ (touching each spin once) through 
the lattice.  Repeat steps 2 and 3 after each sweep.

5. Compare the average energy per spin in the simulation to the 
analytically calculated result.

6. Change the parameter value of Beta (Boltzmann’s constant 
divided by temperature, assume units such that Boltzmann’s 
constant becomes one) and repeat steps 1-5.

An Elementary Monte Carlo Application

1. Generate two pseudo-random numbers (x  
and y coordinates) with the Marsaglia 
generator that fall within a unit square.

2. Test if this point is within a quarter unit  
circle centered on the lower left vertex of the 
square (x2 + y2 1).

3. Repeat steps 1 and 2 50,000,000,000 times, 
keeping track of the number of hits within 
the circle.

4. Pi 

 
4 * the number of hits /  

50,000,000,000

Energy per Spin vs. Number of Sweeps

An example of a 2d  
lattice.  A 1d open BC  
lattice would consist of  
one of these rows or  
columns.  (Photo credit to 
http://www.clarku.edu/~d 
joyce/wallpaper/lattices.h 
tml )

Energy per Spin
(Periodic Boundary Conditions)

Analysis
Although the energy per spin in the graphs above appears to be scattered arbitrarily, it is centered 

around the analytically calculated value for that particular beta value.  The graph below shows that with 
large numbers of sweeps, the Monte Carlo simulations correctly predict the energy per spin of systems 
with periodic BCs (with slight modifications to the code, the program would produce data for open BCs 
instead).  As the beta value becomes especially large (and the corresponding temperature becomes very 
low), the Monte Carlo data will diverge slightly from the expected results.  There is already evidence of 
deviation from the simulation in the open BC results.  This can be thought of in terms of actual particles, 
which become increasingly elusive at micro-Kelvin temperatures.  While this solution is fairly trivial in 
itself, this model does offer valuable insight into the more complex, higher-dimensional models, which 
have not yet been analytically solved.

Energy per Spin vs. Beta Value Conclusion
The findings support the hypothesis that the Monte 
Carlo algorithms generate data sets in statistical  
agreement with the analytically calculated physics 
models.

Sponsored by Dr. Bernd 
Berg and Dr. Urs Heller

Note: the Monte Carlo data produced corresponds to a periodic BC
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