Biased Metropolis-Heatbath Algorithm

Alexei Bazavov Florida State University

November 2005

Introduction

In the Metropolis procedure transition probability from the configuration (k) to (l) is given as

$$W^{(l)(k)} = f(l,k) w^{(l)(k)} \text{ for } l \neq k$$
$$W^{(k)}(k) = f(k,k) + \sum_{l \neq k} f(l,k)(1 - w^{(l)(k)})$$

For the case of the non-symmetric proposal probabilities $f(l,k) \neq f(k,l)$ the acceptance probability can be modified as [Hastings (1970)]

$$w_b^{(l)(k)} = \min\left\{1, \frac{P_B^{(l)}}{P_B^{(k)}} \frac{f(k,l)}{f(l,k)}\right\}$$

Example: U(1) Lattice Gauge Theory

Variables are complex numbers of unit length:

$$U = e^{i\phi}, \quad \phi \in [0, 2\pi)$$

The problem is reduced to sampling the probability density (PDF)

 $P_{\alpha}(\phi) = N_{\alpha} e^{\alpha \cos \phi}$

where α is a parameter associated to the interaction of the link being updated with its environment. The corresponding cumulative distribution function (CDF) is

$$F_{\alpha}(\phi) = N_{\alpha} \int_{0}^{\phi} d\phi' \, e^{\alpha \, \cos \phi'}$$

where N_{α} ensures the normalization $F_{\alpha}(2\pi) = 1$.

Constructing the Algorithm

What are our options:

- HeatBath Algorithm (HBA)
- Metropolis (MA)
- Biased Metropolis-Heatbath Algorithm (BMHA)

Acceptance rate (AR) =
$$\frac{\text{\# of updated links}}{\text{total \# of links}}$$

Constructing the Algorithm: HBA

The HBA generates ϕ by converting a uniformly distributed random number $0\leqslant z<1$ into

$$\phi = F_{\alpha}^{-1}(z) \; .$$

Implementation:

- Hattori and Nakajima
- Wensley

Repeat Until Accepted (RUA) step \rightarrow acceptance rate = 1 ... BUT may need several proposals!

Constructing the Algorithm: Metropolis

Generate ϕ_{new} uniformly in the range $0 \leq \phi_{new} < 2\pi$, accept with probability

$$p_{MA} = \min\left\{1, \frac{P_{\alpha}(\phi_{new})}{P_{\alpha}(\phi_{old})}\right\}$$

May have low acceptance rate.

Possible cures

- multihit Metropolis, but cannot be made RUA!
- shrinking of the proposal range

Constructing the Algorithm: **BMHA**

We need:

- discretization of the CDF
- table with the areas of equal probability
- modified proposal of ϕ_{new}
- modified accept/reject step

Example

In 4D $0 \leq \alpha \leq 6\beta_g$. Let $\beta_g = 1.0 \Rightarrow 0 \leq \alpha \leq 6$

Discretize α in 16 bins, assume it is in 11th bin, use middle value.

Cumulative distribution function $F_{\alpha}(\phi)$ with the level map in the $\alpha - \phi$ plane

Partition of the $riangle \phi^{i,j}$ values

8

Discretization of the cumulative distribution function for U(1)

9

BMHA update procedure

- 1. Find the α^i value nearest to the actual α (i = 11 in ex.)
- 2. Place the old ϕ_{old} value on the discretization grid, i.e., find integer j such that $\phi^{i,j-1} \leq \phi_{old} < \phi^{i,j}$ (for $n = 2^{n_2}$ the label j can be determined in n_2 steps with recursion).
- 3. Pick an integer j' from 1 to n (n = 16 in example)
- 4. Propose $\phi_{new} = \phi^{i,j'-1} + x^r \bigtriangleup \phi^{i,j'}, \ 0 \leq x^r < 1.$
- 5. Accept ϕ_{new} with the probability

$$p_{BMHA} = \min\left\{1, \frac{P_{\alpha}(\phi_{new})}{P_{\alpha}(\phi_{old})} \frac{\mathbf{\Delta}\phi^{\mathbf{i},\mathbf{j}'}}{\mathbf{\Delta}\phi^{\mathbf{i},\mathbf{j}}}\right\}$$

U(1) BMHA performance

Lattice: 4×16^3

Coupling: $\beta_g = 1.0$

Sweeps: $16384 + 32 \times 20480$

CDF discretization: 32×128

	HBA	Metropolis	BMHA
CPU time [s]	$131,\!111$	$84,\!951$	$107,\!985$
AR	1 (1.093 proposals)	0.286	0.972
$\langle \cos \phi_{\Box} \rangle$	0.59113 (8)	0.59103(16)	0.59106(12)
$ au_{ m int}$	127(7)	341 (26)	142(10)

Summary: Biased Metropolis-Heatbath Algorithm (BMHA)

- Sampling with BMHA is essentially equivalent to HBA but can be numerically faster
- BMA can be used when CDF is not a priori known (making HBA impossible)
- BMA can be extended to a multi-variable case