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Introduction

In the Metropolis procedure transition probability from the

configuration (k) to (/) is given as

wOE = £ k) wD® for [ £k

WO E) = F(k )+ 3 FER)(1 = wD0)
1k
For the case of the non-symmetric proposal probabilities
f(l, k) # f(k,l) the acceptance probability can be modified as
[Hastings (1970)]
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Example: U(1) Lattice Gauge Theory

Variables are complex numbers of unit length:
U=¢e"? ¢clo02n)

The problem is reduced to sampling the probability density (PDF)
Pa(9) = Nore

where « is a parameter associated to the interaction of the link
being updated with its environment. The corresponding cumulative
distribution function (CDF) is

¢ /
o =, [ e
0

where N, ensures the normalization F,(27) = 1.



Constructing the Algorithm

What are our options:

e HeatBath Algorithm (HBA)

e Metropolis (MA)

e Biased Metropolis-Heatbath Algorithm (BMHA)

# of updated links
total # of links

Acceptance rate (AR) =



Constructing the Algorithm: HBA

The HBA generates ¢ by converting a uniformly distributed

random number 0 < z < 1 into

¢o=F;'(z) .

Implementation:
e Hattori and Nakajima
e Wensley

Repeat Until Accepted (RUA) step — acceptance rate = 1 ...
BUT may need several proposals!



Constructing the Algorithm: Metropolis

Generate ¢@,,¢, uniformly in the range 0 < @pe < 27, accept with

probability

Po(¢new) }

= min < 1,
bara { Po(®o1a)

May have low acceptance rate.

Possible cures
e multihit Metropolis, but cannot be made RUA!

e shrinking of the proposal range



Constructing the Algorithm: BMHA
We need:
e discretization of the CDF
e table with the areas of equal probability
e modified proposal of ¢,,cq
e modified accept/reject step

Example
n4D 0 < a <68, Let 5,=10 = 0<a<6

Discretize « in 16 bins, assume it is in 11th bin, use middle value.



Cumulative distribution function F,(¢) with the
level map in the a — ¢ plane
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Partition of the A¢*’ values
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Discretization of the cumulative distribution
function for U(1)

O
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BMHA update procedure

. Find the o' value nearest to the actual a (i = 11 in ex.)

. Place the old ¢,;4 value on the discretization
grid, i.e., find integer j such that ¢/~ < ¢o1q < O/
(for n = 2™2 the label j can be determined in ny steps with

recursion).
. Pick an integer j' from 1 to n (n = 16 in example)
. Propose ¢y = (bi’j/_l + " A(bi’j/, 0<z" <1.

. Accept ¢,ey With the probability

Po(new) AGH
Poc (Qbold) A¢i’j

PBMHA = Min {1,
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U(1) BMHA performance

Lattice: 4 x 16°

Coupling: 3, = 1.0

Sweeps: 16384 + 32 x 20480
CDF discretization: 32 x 128

HBA Metropolis BMHA
CPU time |[s] 131,111 84,951 107,985
AR 1 (1.093 proposals) 0.286 0.972
(coS ¢r) 0.59113 (8) 0.59103 (16) | 0.59106 (12)
Tint 127 (7) 341 (26) 142 (10)
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Summary: Biased Metropolis-Heatbath
Algorithm (BMHA)

e Sampling with BMHA is essentially equivalent to HBA but can

be numerically faster

e BMA can be used when CDF is not a priori known (making
HBA impossible)

e BMA can be extended to a multi-variable case

12



