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Introduction

In the Metropolis procedure transition probability from the
configuration (k) to (l) is given as

W (l)(k) = f(l, k)w(l)(k) for l 6= k

W (k)(k) = f(k, k) +
∑
l 6=k

f(l, k)(1− w(l)(k))

For the case of the non-symmetric proposal probabilities
f(l, k) 6= f(k, l) the acceptance probability can be modified as
[Hastings (1970)]

w
(l)(k)
b = min

{
1,

P
(l)
B

P
(k)
B

f(k, l)
f(l, k)

}
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Example: U(1) Lattice Gauge Theory

Variables are complex numbers of unit length:

U = eiφ, φ ∈ [0, 2π)

The problem is reduced to sampling the probability density (PDF)

Pα(φ) = Nα eα cos φ

where α is a parameter associated to the interaction of the link
being updated with its environment. The corresponding cumulative
distribution function (CDF) is

Fα(φ) = Nα

∫ φ

0

dφ′ eα cos φ′

where Nα ensures the normalization Fα(2π) = 1.
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Constructing the Algorithm

What are our options: AAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

• HeatBath Algorithm (HBA) AAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

• Metropolis (MA) AAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

• Biased Metropolis-Heatbath Algorithm (BMHA)
AAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

Acceptance rate (AR) =
# of updated links

total # of links
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Constructing the Algorithm: HBA

The HBA generates φ by converting a uniformly distributed
random number 0 6 z < 1 into

φ = F−1
α (z) .

Implementation:

• Hattori and Nakajima

• Wensley

Repeat Until Accepted (RUA) step → acceptance rate = 1 ...
BUT may need several proposals!

4



Constructing the Algorithm: Metropolis

Generate φnew uniformly in the range 0 6 φnew < 2π, accept with
probability

pMA = min
{

1,
Pα(φnew)
Pα(φold)

}
May have low acceptance rate.

Possible cures

• multihit Metropolis, but cannot be made RUA!

• shrinking of the proposal range
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Constructing the Algorithm: BMHA

We need:

• discretization of the CDF

• table with the areas of equal probability

• modified proposal of φnew

• modified accept/reject step

Example

In 4D 0 6 α 6 6βg. Let βg = 1.0 ⇒ 0 6 α 6 6

Discretize α in 16 bins, assume it is in 11th bin, use middle value.
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Cumulative distribution function Fα(φ) with the

level map in the α− φ plane
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Partition of the 4φi,j values
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Discretization of the cumulative distribution

function for U(1)

 0

 0.2

 0.4

 0.6

 0.8

 1
F

φ
π/4 π/2 3π/4 π 5π/4 3π/2 2π7π/4

9



BMHA update procedure

1. Find the αi value nearest to the actual α (i = 11 in ex.)

2. Place the old φold value on the discretization
grid, i.e., find integer j such that φi,j−1 6 φold < φi,j

(for n = 2n2 the label j can be determined in n2 steps with
recursion).

3. Pick an integer j′ from 1 to n (n = 16 in example)

4. Propose φnew = φi,j′−1 + xr 4φi,j′
, 0 6 xr < 1.

5. Accept φnew with the probability

pBMHA = min

{
1,

Pα(φnew)
Pα(φold)

∆φi,j′

∆φi,j

}
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U(1) BMHA performance

AA

Lattice: 4× 163

Coupling: βg = 1.0

Sweeps: 16384 + 32 × 20480

CDF discretization: 32 × 128

HBA Metropolis BMHA

CPU time [s] 131,111 84,951 107,985

AR 1 (1.093 proposals) 0.286 0.972

〈cos φ 〉 0.59113 (8) 0.59103 (16) 0.59106 (12)

τint 127 (7) 341 (26) 142 (10)

11



Summary: Biased Metropolis-Heatbath

Algorithm (BMHA)

.

.

• Sampling with BMHA is essentially equivalent to HBA but can
be numerically faster

• BMA can be used when CDF is not a priori known (making
HBA impossible)

• BMA can be extended to a multi-variable case

.

.
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