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Probability Distributions and Sampling

In N experiments we may find an event A to occur n times. The frequency
definition of the probability of the event is

P (A) = lim
N→∞

n

N
.

Let P (a, b) be the probability that xr ∈ [a, b] where xr is a random variable drawn
in the interval (−∞,+∞) with a probability density f(x) > 0. Then,

P (a, b) =
∫ b

a

dx f(x) and f(x) = lim
y→x

P (y, x)
x− y

.

The (cumulative) distribution function of the random variable xr is defined as

F (x) = P (xr ≤ x) =
∫ x

−∞
f(x′) dx′ .
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For uniform probability distribution between [0, 1),

u(x) =
{ 1 for 0 ≤ x < 1;

0 elsewhere.

The corresponding distribution function is

U(x) =
∫ x

−∞
u(x′) dx′ =

{ 0 for x < 0;
x for 0 ≤ x ≤ 1;
1 for x > 1.

It allows for the construction of general probability distributions. Let

y = F (x) =
∫ x

−∞
f(x′) dx′ .

For yr being a uniformly distributed random variable in [0, 1)

xr = F−1(yr) is then distributed according to the probability density f(x) .
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Example

Mapping of the uniform to the Cauchy distribution.
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Pseudo Random Numbers and Computer Code

It is sufficient to generate uniform (pseudo) random numbers. Control your random
number generator! Therefore, a portable, well-tested generator should be choosen.
My code supplies a generator by Marsaglia and collaborators whith an approximate
period of 2110. How to get it? Download STMC.tgz which unfolds under (Linux)

tar -zxvf STMC.tgz
into the directory structure shown below.

STMC

ForProgAssignments ForLib ForProc Work

a0102_02 a0102_03 ... ... a0103_01 ... ...
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Routines:
rmaset.f sets the initial state of the random number generator.
ranmar.f provides one random number per call (function version rmafun.f).
rmasave.f saves the final state of the generator.

Initial seeds

−1801 ≤ iseed1 ≤ 29527 and − 9373 ≤ iseed2 ≤ 20708 .

give independent series (useful for parallel processing).

Illustration: Assignment a0102 02.

RANMAR INITIALIZED. MARSAGLIA CONTINUATION.
idat, xr = 1 0.116391063 idat, xr = 1 0.495856345
idat, xr = 2 0.96484679 idat, xr = 2 0.577386141
idat, xr = 3 0.882970393 idat, xr = 3 0.942340136
idat, xr = 4 0.420486867 idat, xr = 4 0.243162394
extra xr = 0.495856345 extra xr = 0.550126791
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Confidence Intervals and Sorting

One defines q-tiles (also quantiles or fractiles) xq of a distribution function by

F (xq) = q .

An example is the median x1
2
. The probability content of the confidence interval

[xq, x1−q] is p = 1− 2q .

Example: Gaussian or normal distribution of variance σ2 :

[−nσ,+nσ] ⇒ p = 0.6827 for n = 1, p = 0.9545 for n = 2 .

The peaked distribution function

Fq(x) =
{

F (x) for F (x) ≤ 1
2,

1− F (x) for F (x) > 1
2.
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provides a graphical visualization of probability intervals of such a distribution:
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Sorting allows for an empirical estimate. Assume we generate n random number
x1, ..., xn. We may re-arrange the xi in increasing order:

xπ1 ≤ xπ2 ≤ . . . ≤ xπn

where π1, . . . , πn is a permutation of 1, . . . , n.
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An estimator for the distribution function F (x) is then the empirical distribution
function

F (x) =
i

n
for xπi

≤ x < xπi+1
, i = 0, 1, . . . , n− 1, n

with the definitions xπ0 = −∞ and xπn+1 = +∞. To calculate F (x) one needs
an efficient way to sort n data values in ascending (or descending) order. In the
STMC package this is provided by a heapsort routine, which arrives at the results
in O(n log2 n) steps.

Example: Gaussian distribution in assignment a0106 02 (200 and 20,000 data).

Central Limit Theorem: Convergence of the Sample Mean

Gaussian σ2(xr) =
σ2(xr)

N
for x =

1
N

N∑
i=1

xi .
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Binning

We group NDAT data into NBINS bins, where each binned data point is the arithmetic
average of

NBIN = [NDAT/NBINS] (Fortran integer division.)

original data points. Should not be confused with histogramming! Preferably NDAT
is a multiple of NBINS. The purpose of the binning procedure is twofold:

1. When the the central limit theorem applies, the binned data will become
practically Gaussian when NBIN is large enough. This allows to apply Gaussian
error analysis methods even when the original are not Gaussian.

2. When data are generated by a Markov process subsequent events are correlated.
For binned data these autocorrelations are reduced and can be neglected, once
NBIN is sufficiently large.

10



Example:
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Figure 1: Comparison of a histogram of 500 binned data with the normal distributionp
(120/π) exp[−120 (x − 1/2)2]. Each binned data point is the average of 20 uniformly

distributed random numbers. Assignment a0108 02.
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Gaussian Difference Test

One is often faced with comparing two different empirical estimates of some mean.
How large must D = x− y be in order to indicate a real difference? The quotient

dr = Dr/σD , σ2
D = σ2

x + σ2
y

is normally distributed with expectation zero and variance one. The likelihood
that the observed difference |x− y| is due to chance is defined to be

Q = 1− P (|dr| ≤ d) = 2G0(−d) = 1− erf
(
d/
√

2
)

.

If the assumption is correct, then Q is a uniformly distributed random variable in
the range [0, 1). Examples: (interactive in ForProc/Gau dif/)

x1 ± σx1 1.0± 0.1 1.0± 0.1 1.0± 0.1 1.0± 0.05 1.000± 0.025
x2 ± σx2 1.2± 0.2 1.2± 0.1 1.2± 0.0 1.2± 0.00 1.200± 0.025

Q 0.37 0.16 0.046 0.000063 0.15× 10−7
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Gaussian Error Analysis for Small Samples:

Gosset’s Student Distribution and the Student Difference Test.

The Error of the Error Bar:

χ2 Distribution and the Variance Ratio Test (F-Test).

The Jackknife Approach:

Jackknife estimators correct for the bias and the error of the bias. If there is not
bias, their results are identical with the conventional error analysis. As the extra
effort of using Jacknife routines is minimal, they should be the standard of error
analysis.

Bias problems occur when one estimates a non-linear function of a mean x̂:

f̂ = f(x̂) .
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Jacknife estimators of the function are then defined by

f
J

=
1
N

N∑
i=1

fJ
i with fJ

i = f(xJ
i ) and xJ

i =
1

N − 1

∑
k 6=i

xk .

The estimator for the variance is

s2
J(f

J
) =

N − 1
N

N∑
i=1

(fJ
i − f

J
)2 .

Straightforward algebra shows that in the unbiased case the jackknife variance
reduces to the normal variance. Of order N (not N2) operations are needed to
construct the jackknife averages xJ

i , i = 1, . . . , N from the original data.

Determination of Parameters (Fitting):

Levenberg-Marquardt approach besides simple linear regression.
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Statistical Physics and Markov Chain Monte Carlo Simulations

MC simulations of systems described by the Gibbs canonical ensemble aim at
calculating estimators of physical observables at a temperature T . In the following
we consider the calculation of the expectation value of an observable O. All systems
on a computer are discrete, because a finite word length has to be used. Hence,

Ô = Ô(β) = 〈O〉 = Z−1
K∑

k=1

O(k) e−β E(k)

where Z = Z(β) =
K∑

k=1

e−β E(k)

is the partition function. The index k = 1, . . . ,K labels all configurations (or
microstates) of the system, and E(k) is the (internal) energy of configuration k.
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In the following I use Potts models on d-dimensional cubic lattices with periodic
boundary conditions. Without being overly complicated, these models allow to
illustrate essential features we are interested in. We define the energy of the system
by

E
(k)
0 = −2

∑
<ij>

δ(q(k)
i , q

(k)
j ) +

2 d N

q
with δ(qi, qj) =

{
1 for qi = qj

0 for qi 6= qj
.

The sum < ij > is over the nearest neighbor lattice sites and the Potts spins

or states of q
(k)
i take the values 1, . . . , q. For the energy per spin the notation is

es = E/N and our normalization is chosen so that es agrees for q = 2 with the
conventional Ising model definition. For the 2d Potts models a number of exact
results are known, e.g.,

βc =
1
Tc

=
1
2

ln(1 +
√

q) = βPotts
c , ec

0s = Ec
0/N =

4
q
− 2− 2/

√
q .

The phase transition is second order for q ≤ 4 and first order for q ≥ 5.
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Markov Chain Monte Carlo

A Markov chain allows to generate configurations k with probability

P
(k)
B = cB w

(k)
B = cB e−βE(k)

, cB constant .

The state vector (P (k)
B ), for which the configurations are the vector indices,

is called Boltzmann state. A Markov chain is a simple dynamic process, which
generates configuration kn+1 stochastically from configuration kn. Let the transition
probability to create the configuration l in one step from k be given by W (l)(k) =
W [k → l]. Then, the transition matrix

W =
(
W (l)(k)

)
defines the Markov process. Note, that this matrix is a very big and never stored

in the computer. The matrix achieves our goal and generates configurations with
the desired probabilities, when it satisfies the following properties:
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(i) Ergodicity:

e−βE(k)
> 0 and e−βE(l)

> 0 imply :
an integer number n > 0 exists so that (Wn)(l)(k) > 0 holds.

(ii) Normalization: ∑
l

W (l)(k) = 1 .

(iii) Balance: ∑
k

W (l)(k) e−βE(k)
= e−βE(l)

.

Balance means: The Boltzmann state is an eigenvector with eigenvalue 1 of
the matrix W = (W (l)(k)).

With that we have replaced the canonical ensemble average by a time average over
an artificial dynamics and one distinguishes dynamical universality classes.
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The Metropolis Algorithm

Detailed balance still does not uniquely fix the transition probabilities W (l)(k). The
Metropolis algorithm is a popular choice can be used whenever one knows how to
calculate the energy of a configuration. Given a configuration k, the Metropolis
algorithm proposes a configuration l with probability

f(l, k) = f(k, l) normalized to
∑

l

f(l, k) = 1 .

The new configuration l is accepted with probability

w(l)(k) = min

[
1,

P
(l)
B

P
(k)
B

]
=

{
1 for E(l) < E(k)

e−β(E(l)−E(k)) for E(l) > E(k).

If the new configuration is rejected, the old configuration has to be counted again.
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The Heatbath algorithm

The heat bath algorithm chooses a spin qi directly with the local Boltzmann
distribution defined by its nearest neighbors

PB(qi) = const e−β E(qi) .

As many Metropolis hits (on the same spin) are needed to reach this distribution,
the heatbath is more efficient than the Metropolis algorithm. However, it
models more complicated than Potts models the calculation of the local heatbath
probabilities is often too involved to make it a viable alternative.

Start and equilibration

Initially we have to start with a microstate which may be far off the Boltzmann
distribution. Although the weight of states decreases with 1/n where n is the steps
of the Markov process, one should exclude the initial states from the equilibrium
statistics. Many ways to generate start configurations exist, e.g.,
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1. A random configuration corresponding to β = 0.

2. An ordered configuration for which all Potts spins take on the same q-value.

Examples: (assignments a0303 01 and a0303 05)
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Figure 2: Initial time series of 200 sweeps each on a 80 × 80 lattice. Left: Metropolis for a 2d

Ising model at β = 0.4. Right: q = 10 Potts model at β = 0.62.
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Consistency Checks

For the 2d Ising model we can test against the exact finite lattice results of
Ferdinand and Fisher. We simulate a 202 lattice at β = 0.4 using 10 000 sweeps for
reaching equilibrium 64 bins of 5 000 sweeps for measurement (a careful justification
is given later). We find (assignment a0303 06)

e0s = −1.1172 (14) (Metropolis) versus ês = −1.117834 (exact) .

The Gaussian difference test gives a perfectly admissible value Q = 0.65 .

For the 2d 10-state Potts model at β = 0.62 we test our Metropolis versus our
heat bath code on a 20× 20 lattice to find (assignment a0303 08)

actm = 0.321772 (75) (Metropolis) versus actm = 0.321661 (70) (heat bath)

and Q = 0.28 for the Gaussian difference test. Another perfectly admissible value.
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3d 3-state Potts model

To illustrate features of a first order phase transition we simulate the 3d 3-state
Potts model on a 243 lattice at a pseudo-transition temperature and plot its energy
histogram. A characteristic double peak structure is found (assignment a0303 10):
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Self-Averaging Illustration for the 2d Heisenberg model

We compare the peaked distribution function of a mean energy density per
link for different lattice sizes. The property of self-averaging is observed: The
larger the lattice, the smaller the confidence range. The other way round, the
peaked distribution function is very well suited to exhibit observables for which
self-averaging does not work, as for instance encountered in spin glass simulations.
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Figure 3: O(3) σ-model at β = 1.1 (assignments a0304 06 and a0304 08).
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Statistical Errors of Markov Chain MC Data

A typical MC simulation falls into two parts:

1. Equilibration without measurements.

2. Production with measurements.

Rule of thumb (for long calculations): Do not spend more than 50% of your
CPU time on measurements!

Autocorrelations

We like to estimate the expectation value f̂ of some physical observable. We
assume that the system has reached equilibrium. How many MC sweeps are needed
to estimate f̂ with some desired accuracy? To answer this question, one has to
understand the autocorrelations within the Markov chain.

25



Given is a time series of measurements fi, i = 1, . . . , N . With the notation
t = |i− j| the autocorrelation function of the mean f̂ is defined by

Ĉ(t) = Ĉij = 〈 (fi − 〈fi〉) (fj − 〈fj〉) 〉 = 〈fifj〉 − 〈fi〉 〈fj〉 = 〈f0ft〉 − f̂ 2

Some algebra shows that the variance of the estimator f for the mean and the
autocorrelation functions are related by

σ2(f) =
σ2(f)

N

[
1 + 2

N−1∑
t=1

(
1− t

N

)
ĉ(t)

]
with ĉ(t) =

Ĉ(t)

Ĉ(0)
.

This equation ought to be compared with the corresponding equation for
uncorrelated random variables σ2(f) = σ2(f)/N . The difference is the factor
in the bracket which defines the integrated autocorrelation time as

τint = lim
N→∞

[
1 + 2

N−1∑
t=1

(
1− t

N

)
ĉ(t)

]
.
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Self-consistent versus reasonable error analysis

The calculation of the integrated autocorrelation provides a self-consistent error
analysis. But in practice this is often out of reach.

According to the Student distribution about twenty independent data are
sufficient to estimate mean values reliably, while the error of the error bar the χ2

distribution implies that about one thousand are needed for an estimate of the
integrated autocorrelation time with 10% accuracy on the two σ confidence level.

In practice, one may rely on the binning method with a fixed number of ≥ 16
bins. How do we know then that the statistics has become large enough? There
can be indirect arguments like finite size scale extrapolations, which suggest that
the integrated autocorrelation time is (much) smaller than the achieved bin length.
This is no longer self-consistent, but a reasonable error analysis.
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Comparison of Markov chain MC algorithms

The d = 2 Ising model at the critical temperature
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Figure 4: One-hit Metropolis algorithm with sequential updating: critical slowing
down, τint ∼ Lz where z ≈ 2.17 is the dynamical critical exponent (assignment
a0402 02 D).
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Another MC dynamics, Swendsen-Wang (SW) and Wolff (W) cluster algorithm:
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Figure 5: Estimates of integrated autocorrelation times from simulations of the
d = 2 Ising model at the critical temperature (assignment a0503 05).
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Simulations of the Multicanonical Ensemble

One of the questions which ought to be addressed before performing a large
scale computer simulation is “What are suitable weight factors for the problem at
hand?” So far we used the Boltzmann weights as this appears natural for simulating
the Gibbs ensemble. However, a broader view of the issue is appropriate.

Conventional simulations can by re-weighting techniques only be extrapolated
to a vicinity of the simulation temperature. For multicanonical simulations this is
different. A single simulation allows to obtain equilibrium properties of the Gibbs
ensemble over a range of temperatures. Of particular interest are two situations
for which canonical simulations do not provide the appropriate implementation of
importance sampling:

1. The physically important configurations are rare in the canonical ensemble.

2. A rugged free energy landscape makes the physically important configurations
difficult to reach.
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Multicanonical simulations sample, in an appropriate energy range, with an
approximation to the weights

ŵmu(k) = wmu(E(k)) = e−b(E(k)) E(k)+a(E(k)) =
1

n(E(k))

where n(E) is the spectral density. The function b(E) defines the inverse
microcanonical temperature and a(E) the dimensionless, microcanonical free
energy. The function b(E) has a relatively smooth dependence on its arguments,
which makes it a useful quantity when dealing with the weight factors. The
multicanonical method requires two steps:

1. Obtain a working estimate the weights. Working estimate means that the
approximation has to be good enough so that the simulation covers the desired
eneryg or temperature range.

2. Perform a Markov chain MC simulation with the fixed weights. The thus
generated configurations constitute the multicanonical ensemble.
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Re-Weighting to the Canonical Ensemble

Given the multicanonical time series, where i = 1, . . . , n labels the generated
configurations. The formula

O =
∑n

i=1O(i) exp
[
−β E(i) + b(E(i)) E(i) − a(E(i))

]∑n
i=1 exp

[
−β E(i) + b(E(i)) E(i) − a(E(i))

] .

replaces the multicanonical weighting of the simulation by the Boltzmann factor.
The denominator differs from the partition function Z by a constant factor which
drops out (for discrete systems this simplifies for functions of the energy using
histograms). The computer implementation of these equations requires care and a
Jackknife analysis with logarithmic coding relying on the formula

lnC = max (lnA, lnB) + ln{1 + exp [−| lnA− lnB|]}

ought to be used.
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Energy and Specific Heat Calculation

Multicanonical data for the energy per spin (with jackknife errors) of the 2d Ising
model on a 20 × 20 lattice are produced in assignment a0501 01 and compared
with the exact results of Ferdinand and Fisher in assignment a0501 03. Results:
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The same numerical data allow to calculate the specific heat defined by

C =
d Ê

d T
= β2

(
〈E2〉 − 〈E〉2

)
.
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Free Energy and Entropy Calculation

At β = 0 the Potts partition function is Z = qN . Therefore, multicanonical
simulations allow for proper normalization of the partition function, if β = 0
is included in the temperature range. Example: Entropies from multicanonical
simulations of the The 2d Ising and 10-state Potts models on a 20 × 20 lattice
(assignment a0501 03 for Ising and a0501 05 for 10-state Potts).
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Summary

• We considered Statistics, Markov Chain Monte Carlo simulations, the Statistical
Analysis of Markov chain data and, finally, Multicanonical Sampling.

• It is a strength of computer simulations that one can generate artificial (not
realized by nature) ensembles, which enhance the probabilities of rare events on
may be interested in, or speed up the dynamics.

• Each method comes with its entire computer code.
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