Lecturenotes Statistics I – Contents

- 1. Uniform and General Distributions
- 2. Confidence Intervals, Cumulative Distribution Function and Sorting

Uniform and General Distributions

$$u(x) = \begin{cases} 1 & \text{for } 0 \le x < 1; \\ 0 & \text{elsewhere.} \end{cases}$$

The corresponding distribution function is

$$U(x) = \int_{-\infty}^{x} u(x') \, dx' = \begin{cases} 0 & \text{for } x < 0; \\ x & \text{for } 0 \le x \le 1; \\ 1 & \text{for } x > 1. \end{cases}$$

It allows for the construction of general probability distributions. Let

$$y = F(x) = \int_{-\infty}^{x} f(x') \, dx' \; .$$

For y^r being a uniformly distributed random variable in [0,1)

 $x^r = F^{-1}(y^r)$ is then distributed according to the probability density f(x).

Example

Mapping of the uniform to the Cauchy distribution.

Confidence Intervals and Sorting

One defines q-tiles (also quantiles or fractiles) x_q of a distribution function by

$$F(x_q) = q \; .$$

An example is the median $x_{\frac{1}{2}}.$ The probability content of the confidence interval $[x_q,x_{1-q}] \ \ {\rm is} \ \ p=1-2q \ .$

Example: Gaussian or normal distribution of variance σ^2 :

$$[-n\sigma, +n\sigma] \Rightarrow p = 0.6827 \text{ for } n = 1, p = 0.9545 \text{ for } n = 2.$$

The **peaked distribution function**

$$F_q(x) = \begin{cases} F(x) \text{ for } F(x) \le \frac{1}{2}, \\ 1 - F(x) \text{ for } F(x) > \frac{1}{2}. \end{cases}$$

provides a graphical visualization of probability intervals of such a distribution:

Sorting allows for an empirical estimate. Assume we generate n random number $x_1, ..., x_n$. We may re-arrange the x_i in increasing order:

$$x_{\pi_1} \le x_{\pi_2} \le \ldots \le x_{\pi_n}$$

where π_1, \ldots, π_n is a permutation of $1, \ldots, n$.

An estimator for the distribution function F(x) is then the **empirical distribution** function

$$\overline{F}(x) = \frac{i}{n}$$
 for $x_{\pi_i} \le x < x_{\pi_{i+1}}, i = 0, 1, \dots, n-1, n$

with the definitions $x_{\pi_0} = -\infty$ and $x_{\pi_{n+1}} = +\infty$. To calculate $\overline{F}(x)$ one needs an efficient way to **sort** n data values in ascending (or descending) order. In the STMC package this is provided by a **heapsort** routine, which arrives at the results in $O(n \log_2 n)$ steps.

Example: Gaussian distribution in assignment a0106_02 (200 and 20,000 data).