Lecturenotes Statistics I-Contents

1. Uniform and General Distributions
2. Confidence Intervals, Cumulative Distribution Function and Sorting

Uniform and General Distributions

$$
u(x)=\left\{\begin{array}{l}
1 \text { for } 0 \leq x<1 \\
0 \\
\text { elsewhere }
\end{array}\right.
$$

The corresponding distribution function is

$$
U(x)=\int_{-\infty}^{x} u\left(x^{\prime}\right) d x^{\prime}=\left\{\begin{array}{l}
0 \text { for } x<0 \\
x \text { for } 0 \leq x \leq 1 \\
1 \text { for } x>1
\end{array}\right.
$$

It allows for the construction of general probability distributions. Let

$$
y=F(x)=\int_{-\infty}^{x} f\left(x^{\prime}\right) d x^{\prime}
$$

For y^{r} being a uniformly distributed random variable in $[0,1)$
$x^{r}=F^{-1}\left(y^{r}\right)$ is then distributed according to the probability density $f(x)$.

Example

Mapping of the uniform to the Cauchy distribution.

Confidence Intervals and Sorting

One defines q-tiles (also quantiles or fractiles) x_{q} of a distribution function by

$$
F\left(x_{q}\right)=q
$$

An example is the median $x_{\frac{1}{2}}$. The probability content of the confidence interval

$$
\left[x_{q}, x_{1-q}\right] \text { is } p=1-2 q
$$

Example: Gaussian or normal distribution of variance σ^{2} :

$$
[-n \sigma,+n \sigma] \Rightarrow p=0.6827 \text { for } n=1, \quad p=0.9545 \text { for } n=2
$$

The peaked distribution function

$$
F_{q}(x)=\left\{\begin{array}{l}
F(x) \text { for } F(x) \leq \frac{1}{2} \\
1-F(x) \text { for } F(x)>\frac{1}{2}
\end{array}\right.
$$

provides a graphical visualization of probability intervals of such a distribution:

Sorting allows for an empirical estimate. Assume we generate n random number x_{1}, \ldots, x_{n}. We may re-arrange the x_{i} in increasing order:

$$
x_{\pi_{1}} \leq x_{\pi_{2}} \leq \ldots \leq x_{\pi_{n}}
$$

where π_{1}, \ldots, π_{n} is a permutation of $1, \ldots, n$.

An estimator for the distribution function $F(x)$ is then the empirical distribution function

$$
\bar{F}(x)=\frac{i}{n} \quad \text { for } \quad x_{\pi_{i}} \leq x<x_{\pi_{i+1}}, i=0,1, \ldots, n-1, n
$$

with the definitions $x_{\pi_{0}}=-\infty$ and $x_{\pi_{n+1}}=+\infty$. To calculate $\bar{F}(x)$ one needs an efficient way to sort n data values in ascending (or descending) order. In the STMC package this is provided by a heapsort routine, which arrives at the results in $O\left(n \log _{2} n\right)$ steps.

Example: Gaussian distribution in assignment a0106_02 (200 and 20,000 data).

