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The Central Limit Theorem and Binning

How is the sum of two independent random variables
y' = z1+ ;. (1)

distributed? We denote the probability density of " by g(y). The corresponding
cumulative distribution function is given by
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where F5(x) is the distribution function of the random variable z§. We take the
derivative and obtain the probability density of y”
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The probability density of a sum of two independent random variables is the
convolution of the probability densities of these random variables.

Example: Sums of uniform random numbers, corresponding to the sums of an
uniformly distributed random variable 2" € (0,1]: (a) Let y" = " + «", then

2—qy for 1<y <2, (3)
0 elsewhere.

y for 0<y<1,
92(y) = {

(b) Let y" = a" + 2" + z", then

(2 /2 for 0 <y <1,
(y —3)?/2 for 2 <y <3,
\ 0 elsewhere.
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g3(y) =




The convolution (2) takes on a simple form in Fourier space. In statistics the
Fourier transformation of the probability density is known as characteristic function,
defined as the expectation value of e*® :
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The characteristic function is particularly useful for investigating sums of random
variables, y" =z} 4 z5:
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The characteristic function of a sum of random variables is the product of their
characteristic functions. The result generalizes immediately to N random variables

Y= x4+ ...+ xly . (6)




The characteristic function of y” is

6,6) = T] 0l (7

and the probability density of y” is the Fourier back-transformation of this
characteristic function

1 [T .
9(y) = dte™"™ ¢y (t) . (8)
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The probability density of the sample mean is obtained as follows: The arithmetic
mean of y" is " = y"/N. We denote the probability density of y" by gn(y) and
the probability density of the arithmetic mean by gn(Z). They are related by

gn(T) = Ngn(NZ) . (9)




This follows by substituting y = N into gn(y) dy:
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Figure 1. Probability densities for the arithmetic means of two and three uniformly distributed

random variables, g2(Z) and gs5(x), respectively.




This suggests that sampling leads to convergence of the mean by reducing its
variance. We use the characteristic function to understand the general behavior.
The characteristic function of a sum of independent random variables is the product
of their individual characteristic functions

N
dy(t) = [92(0)] - (10)
The characteristic function for the corresponding arithmetic average is
+oo o g— -I_OO o g—
Pz(t) = / dz " gn(T) = Ndz " gn(NT)
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o) = 0, (%) = [0 (5)] - (11)

Hence,




Example: The normal distribution.

The characteristic function is obtained by Gaussian integration

o(t) = exp (—%0%2) . (12)

Defining y" = " 4+ " we have

00) = 160 = exp (320 ) (13)

This is the characteristic function of a Gaussian with variance 202. We obtain
the characteristic function of the arithmetic average T" = " /2 by the substitution
t—t/2:

oult) = e (—5%4) (14)

The variance is reduced by a factor of two.




The Central Limit Theorem

To simplify the equations we restrict ourselves to ¥ = 0. Let us consider a
probability density f(x) and assume that its moment exists, implying that the
characteristic function is a least two times differentiable, so that

2

Palt) = 1 — 0 + O(F) . (15)

The leading term reflects the the normalization of the probability density and the
first moment is ¢’(0) = & = 0. The characteristic function of the mean becomes

2 3\ 1Y 2 3
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oz(t) = |1 2N2t + O(N?’)] = exp[ 2Nt]—|— O(NQ) .




The probability density of the arithmetic mean *" converges
towards the Gaussian probability density with variance

o (T") = . (16)

A Counter example: The Cauchy distribution provides an instructive, case for
which the central limit theorem does not work. This is expected as its second
moment does not exist.

Nevertheless, the characteristic function of the Cauchy distribution exists. For
simplicity we take @ = 1 and get

+o0 ez'tx
o) = [ e = exnl(-l) (17)
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The integration involves the residue theorem. Using equation (11) for the
characteristic function of the mean of N random variables, we find

outt) = [exp ()] = exal-e (18)

The surprisingly simple result is that the probability distribution for the mean values
of IV independent Cauchy random variables agrees with the probability distribution
of a single Cauchy random variable. Estimates of the Cauchy mean cannot be
obtained by sampling. Indeed, the mean does not exist.
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Binning

The notion of introduced here should not be confused with histogramming!
Binning means here that we group NDAT data into NBINS bins, where each binned
data point is the arithmetic average of

NBIN = [NDAT/NBINS] (Fortran integer division.)

original data points. Preferably NDAT is a multiple of NBINS. The purpose of the
binning procedure is twofold:

1. When the the central limit theorem applies, the binned data will become
practically Gaussian, as soon as NBIN becomes large enough. This allows to
apply Gaussian error analysis methods even when the original are not Gaussian.

2. When data are generated by a Markov process subsequent events are correlated.
For binned data these correlations are reduced and can be neglected, once NBIN
is sufficiently large compared to the autocorrelation time.
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Figure 2: Comparison of a histogram of 500 binned data with the normal distribution
v/ (120/7) exp[—120 (z — 1/2)*]. Each binned data point is the average of 20 uniformly
distributed random numbers. Assignment a0108_02.
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Gaussian Error Analysis for Large and Small Samples

The central limit theorem underlines the importance of the normal distribution.
Assuming we have a large enough sample, the arithmetic mean of a suitable
expectation value becomes normally distributed and the calculation of the confidence
intervals is reduced to studying the normal distribution. It has become the
convention to use the standard deviation of the sample mean

N
—=r . —=r 1 r
oc=oc(x") with T" = N ;_1 T (19)

to indicate its confidence intervals [T — no, * + no| (the dependence of o on N is
suppressed). For a Gaussian distribution the probability content p of the confidence
intervals (19) to be

1 Tn _1.2 n
p=pn)=Gno)—G(—no) = NI dre = erf (\ﬁ) : (20)
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Table 1: Probability content p of Gaussian confidence intervals [z — no, z + no],

n=1,...,6,and ¢ = (1 — p)/2. Assignment a0201_01.
n 1 2 3 4 5
P .63 .95 1.0 1.0 1.0
q .16 .23E-01 .13E-02 .32E-04 .29E-06

In practice the roles of T and T are interchanged: One would like to know
the likelihood that the unknown exact expectation value Z will be in a certain

confidence interval around the measured sample mean. The relationship
TE|T—no,x+no| < T €[T—no,T+ no| (21)
solves the problem. Conventionally, these estimates are quoted as
r = Tt AT (22)

where the error bar AZ is often an estimator of the exact standard deviation.
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An obvious estimator for the variance o is

S = Do -7y (23)

where the prime indicates that we shall not be happy with it, because we encounter
a bias. An estimator is said to be biased when its expectation value does not agree
with the exact result. In our case

(7)) # oz (24)

An estimator whose expectation value agrees with the true expectation value is
called unbiased. For the variance it is rather straightforward to construct an
unbiased estimator (s7)”. The bias of the definition (23) comes from replacing the
exact mean I by its estimator T". The latter is a random variable, whereas the
former is just a number.
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Some algebra shows that the desired unbiased estimator of the variance is given
by
;N
(s3)" = N 1 ._1(905 -z")%. (25)
Correspondingly, the unbiased estimator of the variance of the sample mean is

N
r\2

(5 = F—Ty L T (26)

1=1

Gaussian difference test:

In practice one is often faced with the problem to compare two different empirical
estimates of some mean. How large must D = x — ¥y be in order to indicate a real
difference? The quotient
D’I“

0D

dr = (27)
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is normally distributed with expectation zero and variance one, so that

d
P = P(|d"| <d) = Gyo(d) —Go(—d) = 1-2Go(—d) = erf <—> . (28)
V2
The likelihood that the observed difference | — | is due to chance is defined to be
Q—I—P—2G(—d)—1—erf<i> (29)
pr— p— O _ \/i .

If the assumption is correct, then () is a uniformly distributed random variable in
the range [0,1). Examples:

Table 2: Gaussian difference tests (assignment a0201_06).

Ti+oz | 1.0+£0.1]1.0£0.1 ] 1.0+£0.1 | 1.040.05 | 1.000 + 0.025
Totoz, | 1.2+£02]1.2+£0.1[1.24+0.0 [ 1.240.00 | 1.200 £ 0.025
Q 0.37 0.16 0.046 | 0.000063 | 0.15 x 10~




Gosset’s Student Distribution

We ask the question: What happens with the Gaussian confidence limits when
we replace the variance o2 by its estimator s2 in statements like

T

_ A

T — 7]

< 1.96 with 95% probability.
Oz
For sampling from a Gaussian distribution the answer was given by Gosset, who
published his article 1908 under the pseudonym Student in Biometrika. He showed
that the distribution of the random variable

(30)

is given by the probability density

1 2\
= DB - D2 (”N—l) ' (3
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Here B(z,y) is the beta function. The fall-off is a power law |t|=/ for [t| — oo.
Confidence probabilities of the Student distribution are:

N\S 1.0000 2.0000 3.0000 4.0000 5.0000
2 .50000 . 70483 . 79517 .84404 .87433
3 .57735 .81650 .90453 . 94281 .96225
4 .60900 . 86067 . 94233 .97199 .98461
38 . 64938 .91438 . 98006 .99481 .99843
16 .66683 .93605 .99103 .99884 .99984
64 .67886 .95018 .99614 .99983 1.0000
INFINITY: .68269 . 95450 .99730 .99994 1.0000

For NV < 4 we find substantial deviations from the Gaussian confidence levels.
Up to two standard deviations reasonable approximations of Gaussian confidence
limits are obtained for N > 16 data. If desired, the Student distribution function
can always be used to calculate the exact confidence limits.
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Student difference test

This test takes into account that only a finite number of events are sampled.
Let the following (normal distributed) data be given

T calculated from M events, i.e., 02 = o2/M (32)
y calculated from N events, i.e., a% = O'S/N (33)

and an unbiased estimators of the variances

Zj'\rzl(yj —7)° |

N (N — 1) (34)

M —\2
2 _ .2 i (@i —7T) 2 2/
s==s3/M = M (M 1) and sz = s, /N =

Under the additional assumption o2 = o the probability

r —

P(lz —g| > d) (35)

is is determined by the Student distribution function.
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Examples for the Student difference test for z; = 1.00 £ 0.05 from M data and
ZTo = 1.20 £ 0.05 from N data (assignment a0203_03):

M 512 32 16 16 4 3 2
N 512 32 16 4 4 3 2
¢ | 0.0048 | 0.0063 | 0.0083 | 0.072 | 0.030 | 0.047 | 0.11

The Gaussian difference test gives () = 0.0047. For M = N = 512 the Student
() value is practically identical with the Gaussian result, for M = N = 16 it has
almost doubled. Likelihoods above a 5% cut-off, are only obtained for M = N = 2
(11%) and M =16, N =4 (7%). The latter result looks a bit surprising, because
its () value is smaller than for M = N = 4. The explanation is that for M = 16,
N = 4 data one would expect the N = 4 error bar to be two times larger than the
M = 16 error bar, whereas the estimated error bars are identical.

This leads to the question: Assume data are sampled from the same normal
distribution, when are two measured error bars consistent and when not? Answered
later by: x? Distribution, Error of the Error Bar, and Variance Ratio Test.
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The Jackknife Approach

Jackknife estimators allow to correct for the bias and the error of the bias.
The method was introduced in the 1950s in papers by Quenouille and Tukey. The
jackknife method is recommended as the standard for error bar calculations. In
unbiased situations the jackknife and the usual error bars agree. Otherwise the
jackknife estimates are improvements, so that one cannot loose.

The unbiased estimator of the expectation value  is

N
1
N 4
1=1
Normally bias problems occur when one estimates a non-linear function of Z:

f=17z). (36)
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Typically, the bias is of order 1/N:

— -~ — an a- 1

bias (F) = [ - (F) = S+2+0()

(37)

Unfortunately, we lost the ability to estimate the variance o?(f) = o2(f)/N via
the standard equation

N

A0 = 30 = g Rt (38)

because f; = f(x;) is not a valid estimator of ]? Also it is in non-trivial applications
almost always a bad idea to to use standard error propagation formulas with the
aim to deduce A f from AZ. Jackknife methods are not only easier to implement,
but also more precise and far more robust.

The error bar problem for the estimator f is conveniently overcome by using
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jackknife estimators T], f;, defined by

1

N
?J B szzj with f/ = f(z/) and 2/ = #Zxk (39)
i=1

: : —J\ .
The estimator for the variance o?(f") is

Straightforw algebra shows that in the unbiased case the estimator of the jackknife
variance reduces to the normal variance.

Notably only of order N (not N?) operations are needed to construct the

jackknife averages 7/, i =1,..., N from the original data.

70
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The bias of each jackknife estimator f is also of order 1/N:

bias (7)) = F = (7") = Nai 1 (Na—2 2 ¢ <%> |

As the bias converges faster than the statistical error and is then normally ignored.
In exceptional situations the constant a; may be large. Bias corrections should be
done when the bias reaches the order of magnitude of the statistical error bar. An
estimator for the bias is easily constructed:

=N -1 (0 -7")+0(3)
and, therefore,

b= (N-1)F-7)

defines an estimator for the bias up to O (1/N2) corrections.
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In our Fortran code the calculation of jackknife error bars is implemented by
the subroutines datjack.f and stebjO.f of ForLib. The jackknife data z7,
(i =1,...,N) of equation (39) are generated by a call to

DATJACK(N, X, XJ)

where X is the array of the original data and XJ the array of the corresponding
jackknife data (estimators). This is done in N (not N?) steps. An array FJ,

corresponding to f; has then to be defined by the user. Relying on the jackknife
variance definition a subsequent call to

STEBJO(N,FJ, FM, FV, FE)

uses the array FJ as input to calculate the jackknife mean FJIM, variance FJV and
error bar FIME of the mean. The subroutine bias.f of ForLib returns the bias.
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