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The O(3) σ Model and the Heat Bath Algorithm

We give an example of a model with a continuous energy function. The 2d
version of the model is of interest to field theorists because of its analogies with the
four-dimensional Yang-Mills theory. In statistical physics the d-dimensional model
is known as the Heisenberg ferromagnet. Expectation values are calculated with
respect to the partition function

Z =
∫ ∏

i

dsi e−βE({si}) . (1)

The spins ~si =

 si,1

si,2

si,3

 are normalized to (~si)2 = 1 (2)

and the measure dsi is defined by
∫

dsi =
1
4π

∫ +1

−1

d cos(θi)
∫ 2π

0

dφi , (3)

where the polar (θi) and azimuth (φi) angles define the spin si on the unit sphere.
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The energy is

E =
∑
〈ij〉

(1− ~si~sj) , (4)

where the sum goes over the nearest neighbor sites of the lattice. We would like to
update a single spin ~s. The sum of its 2d neighbors is

~S = ~s1 + ~s2 + . . . + ~s2d−1 + ~s2d .

Hence, the contribution of spin ~s to the action is 2d−~s~S. We propose a new spin
~s
′
with the measure (3) by drawing two uniformly distributed random numbers

φr ∈ [0, π) for the azimuth angle and

cos(θr) = xr ∈ [−1,+1) for the cosine of the polar angle.

This defines the probability function f(~s
′
, ~s) of the Metropolis process, which
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accepts the proposed spin ~s
′
with probability

w(~s → ~s
′
) =

{
1 for ~S~s

′
> ~S~s,

e−β(~S~s−~S~s
′
) for ~S~s

′
< ~S~s.

If sites are chosen with the uniform probability distribution 1/N per site, where
N is the total number of spins, it is obvious that the procedure fulfills detailed
balance. It is noteworthy that the procedure remains valid when the spins are
chosen in the systematic order 1, . . . , N , then 1, . . . , N again, and so on. Balance
still holds, whereas detailed balance is violated (exercise).

The heath bath algorithm

Repeating the Metropolis algorithm again and again for the same spin ~s leads
to the equilibrium distribution of this spin, which reads

P (~s
′
; ~S) = const eβ~S~s ′

with
∫

P (~s
′
; ~S) ds′ = 1 .
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One would prefer to choose ~s
′
directly with the probability

W (~s → ~s
′
) = P (~s

′
; ~S) = const eβ ~s

′
~S ,

as ~s
′
is then immediately Boltzmann distributed with respect to its neighbor spins.

The algorithm, which creates this distribution, is called the heat bath algorithm.

Implementation of this algorithm becomes feasible when the energy function is
sufficiently simple to allow for an explicit calculation of the probability P (~s

′
; ~S).

This is an easy task for the O(3) σ-model. Let

α = angle(~s
′
, ~S), x = cos(α) and S = β|~S| .

For S = 0 a new spin ~s
′
is simply obtained by random sampling. We assume in the

following S > 0. The Boltzmann weight becomes exp(xS) and the normalization
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constant follows from ∫ +1

−1

dx exS =
2
S

sinh(S) .

Therefore, the desired probability is

P (~s
′
; ~S) =

S

2 sinh(S)
exS =: f(x)

and the method of the first lecture can be used to generate events with the
probability density f(x). With

y = F (x) =
∫ x

−1

dx′ f(x′) =
∫ x

−1

dx′ S

2 sinh(S)
ex′S =

exp(+xS)− exp(−S)
2 sinh(S)
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a uniformly distributed random number yr ∈ [0, 1) translates into

xr = cos αr =
1
S

ln [ exp(+S)− yr exp(+S) + yr exp(−S)] . (5)

Finally, one has to give ~s
′
a direction in the plane orthogonal to S. This is done by

choosing a random angle βr uniformly distributed in the range 0 ≤ βr < 2π. Then,
xr = cos αr and βr completely determine ~s

′
with respect to ~S. Before storing ~s

′

in the computer memory, we have to calculate coordinates of ~s
′
with respect to a

Cartesian coordinate system, which is globally used for all spins of the lattice. This
is achieved by a linear transformation. We define

cos θ =
S3

S
, sin θ =

√
1− cos2 θ, cos φ =

S1

S sin θ
and sinφ =

S2

S sin θ
.
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Unit vectors of a coordinate frame K ′, with ẑ in the direction of Ŝ and ŷ in the
x− y plane, are then defined by

ẑ′ =

 sin θ cos φ
sin θ sinφ

cos θ

 , x̂′ =

 cos θ cos φ
cos θ sinφ
− sin θ

 and ŷ′ =

− sinφ
cos φ

0

 .

Expanding ~s
′
in these units vectors, we have

~s
′
= sinαr cos βr x̂

′
+ sinαr sinβr ŷ + cos αr ẑ

′

=

 sinαr cos βr cos θ cos φ− sinαr sinβr sinφ + cos αr sin θ cos φ
sinαr cos βr cos θ sinφ + sinαr cos βr cos φ + cos αr sin θ sinφ

− sinαr cos βr sin θ + cos αr cosθ

 (6)

and the three numbers of the column vector (6) are stored in the computer.
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Self-Averaging Illustration for the 2d O(3) model

We compare the peaked distribution function of the mean action per link
for different lattice sizes. The property of self-averaging is observed: The
larger the lattice, the smaller the confidence range. The other way round, the
peaked distribution function is very well suited to exhibit observables for which
self-averaging does not work, as for instance encountered in spin glass simulations.
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Figure 1: O(3) σ-model at β = 1.1 (assignments a0304 06 and a0304 08).
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