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Multicanonical Ensemble

One of the questions which ought to be addressed before performing a large
scale computer simulation is “What are suitable weight factors for the problem at
hand?” So far we used the Boltzmann weights as this appears natural for simulating
the Gibbs ensemble. However, a broader view of the issue is appropriate.

Conventional canonical simulations can by re-weighting techniques only be
extrapolated to a vicinity of this temperature. For multicanonical simulations this
is different. A single simulation allows to obtain equilibrium properties of the Gibbs
ensemble over a range of temperatures. Of particular interest are two situations
for which canonical simulations do not provide the appropriate implementation of
importance sampling:

1. The physically important configurations are rare in the canonical ensemble.

2. A rugged free energy landscape makes the physically important configurations
difficult to reach.




MC calculation of the interface tension of a first order phase transition provide
an example where canonical MC simulation miss the important configurations.

Let N = L% be the lattice size. For first order phase transition pseudo-transition
temperatures 3(L) exist so that the energy distributions P(F) = P(F; L) become
double peaked and the maxima at E!_ _ < E?_ _ are of equal height Pp.x =

max max

P(El )= P(E?%,.). In-between the maximum values a minimum is located at

max max

some energy F.in. Configurations at E,,;, are exponentially suppressed like
Prin = P(Emin) — Cf LP eXp(_fSA) (1)

where f? is the interface tension and A is the minimal area between the phases,
A =2L%1 for an L? lattice, ¢y and p are constants (computations of p have been
done in the capillary-wave approximation). The interface tension can be calculated
by Binder's histogram method:

! InR(L)  with R(L):P min( L)

== (D)

(2)




and a finite size scaling (FSS) extrapolation of f*(L) for L — oo.

For large systems a canonical MC simulation will practically never visit
configurations at energy £ = FE;, and estimates of the ratio R(L) will be very
inaccurate. The terminology supercritical slowing down was coined to characterize
such an exponential deterioration of simulation results with lattice size.

Multicanonical simulations approach this problem by sampling, in an appropriate
energy range, with an approximation

ﬁ}mu(k) _ wmu(E(k)) _ e—b(E(k))E(k)-|—a(E(k)) (3)

to the weights
1

4
n(E®) )
where n(FE) is the spectral density. The function b(E) defines the inverse
microcanonical temperature and a(F) the dimensionless, microcanonical free

al/n(k) — wl/n(E(k)) —
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energy. The function b(E) has a relatively smooth dependence on its arguments,
which makes it a useful quantity when dealing with the weight factors.

Instead of the canonical energy distribution P(FE), one samples a new
multicanonical distribution

Pru(E) = iy n(E) W (E) & Cmy, - (5)

The desired canonical probability density is obtained by re-weighting

cg Pru(E) —BE
P(E) = .
() Crnu ”wmu(E)6

(6)
This relation is rigorous, because the weights w,,,,(F) used in the actual simulation

are exactly known. With the approximate relation (5) the average number of
configurations sampled does not longer depend strongly on the energy and accurate
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estimates of the ratio R(L) = Puyin/Pmax become possible:

Winu(Eppax) eXP(=B° Emin)
Wmu (Emin) eXp(_ﬁC Emax)

The statistical errors are those of the ratio R,,, times the exactly known factor.

R(L) — Rmu(L)

, (1=1,2). (7)

The multicanonical method requires two steps:

1. Obtain a working estimate @, (k) of the weights @y, (k). Working estimate
means that the approximation to (4) has to be good enough to ensure movement
in the desired energy range, while deviations of P,,,(£) from the constant
behavior (5) are tolerable.

2. Perform a Markov chain MC simulation with the fixed weights W, (k). The
thus generated configurations constitute the multicanonical ensemble. Canonical
expectation values are found by re-weighting to the Gibbs ensemble and standard
jackknife methods allow reliable error estimates.




How to get the Weights?

To get the weights is at the heart of the method (and a stumbling block for
beginners). Some approaches used are listed in the following:

1. Overlapping constrained (microcanonical) MC simulations. Potential problem:
ergodicity.

2. Finite Size Scaling (FSS) Estimates. Best when it works! Problem: There
may be no FSS theory or the prediction may be so inaccurate that the initial
simulation will not cover the target region.

3. General Purpose Recursions. Problem: Tend to deteriorate with increasing
lattice size (large lattices).




Multicanonical Recursion (A variant of Berg, J. Stat. Phys. 82 (1996) 323.)

Multicanonical parameterization of the weights:

w(a) = e 5(Ba) = (b(Fa) Eata(Ea)
where b(E) = [S(E+¢€)— S(F)|/e (e smallest stepsize)
and a(F—¢) = a(F)+[b(E—¢€¢)—b(F)] E .
Recursion:

b"HHE) = V(E)+gy(E)[InH™(E +¢€) —In H"(E)]/e
90(E) = g90(E)/[9"(E)+ 4o (E)],
90(E) = H™(E+e¢)H"(E )/[H”(E+€)+H”(E)],

g"THE) = ¢"(E)+g5(E), g'(E) =

ANIMATION: 2d 10-state 80 x 80 Potts model (Iterations of 100 sweeps each).




F. Wang and Landau: Update are performed with estimators g(E) of the
density of states
9(£1) 1]

g(Es2)’
Each time an energy level is visited, they update the estimator multiplicatively:

p(Fy — E3) = min [

9(E) — g(E) [,

where, initially, g(E) = 1 and f = fo = e!. Once the desired energy range is
covered, the factor f is refined:

fL="Fs for1 =V far

until a value sufficiently close to 1. is reached. Sufficiently close means: The
system keeps on cycling (next page) with fixed weights.

Now the usual MUCA production runs should be carried out (not their philosophy).




Example Runs (2d Ising and Potts models)
Ising model on a 20 x 20 lattice: The multicanonical recursion is run in the range
namin = 400 < iact < 800 = namax . (8)

The recursion is terminated after a number of so called tunneling events. A
tunneling event is defined as an updating process which finds its way from

iact = namin to iact = namax and back .

This notation comes from applications to first order phase transitions. An
alternative notation for tunneling event is random walk cycle. For most applications
10 tunneling events lead to acceptable weights.

For an example run of the Ising model we find the requested 10 tunneling events
after 787 recursions and 64,138 sweeps (assignment a0501_01, a0501_02 for the
2d 10-state Potts model).
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Performance

If the multicanonical weighting would remove all relevant free energy barriers,
the updating process would become a free random walk. Therefore, the theoretically
optimal performance for the second part of the multicanonical simulation is

Ttun g V2 .

Recent work about first order transitions by Neuhaus and Hager shows that that
the multicanonical procedure removes only the leading free energy barrier, while at
least one subleading barrier causes still a residual supercritical slowing done. Up
to certain medium sized lattices the behavior V?1¢ gives a rather good effective
description. For large lattices supercritical slowing down of the form

Teun ~ €XP (+Const Ld_l)

dominates again. The slowing down of the weight recursion with the volume size is
expected to be even (slightly) worse than that of the second part of the simulation.
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Re-Weighting to the Canonical Ensemble

Let us assume that we have performed a multicanonical simulation which covers
the action histograms needed for a temperature range

1
. < — — < .
Bmln —_— /6 T — /BIIlaX

Given the multicanonical time series, where ¢+ = 1,...,n labels the generated
configurations. The formula

ST O exp [_ﬁ E@ 4 b(E(Z')) EG@) a(E(i))}

0= . ' ' '
S exp [-BE® + b(E®) E(0) — a(E®)]

replaces the multicanonical weighting of the simulation by the Boltzmann factor.
The denominator differs from the partition function Z by a constant factor which
drops out.
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For discrete systems it is sufficient to keep histograms when only functions
of the energy are calculated. For an operator O) = f(E() and reweighting
simplifies to

5 g £ (E) hunu(E) exp [~ E + b(E) E — a(E)|
> 5 bl E) exp[~B E + b(E) B — a(B)

7=

where h,,(F) is the histogram sampled during the multicanonical production run
and the sums are over all energy values for which h,,,(E) has entries.
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The computer implementation of these equations requires care. The differences
between the largest and the smallest numbers encountered in the exponents can be
really large. We can avoid large numbers by dealing only with logarithms of sums
and partial sums:

For C = A+ B with A > 0 and B > 0 we can calculate

InC=In(A+B) from InA and InB

without ever storing either A or B or C-

InC = In [maX(A»B) (HE;(@AX,]Z)))]

= max (In A,In B) + In{1 4 exp [min(In 4, In B) — max(In A, In B)]}
= max(InA,In B) +In{l +exp|—|In A — In B|]} .

14



Energy and Specific Heat Calculation

We are now ready to produce multicanonical data for the energy per spin
(with jackknife errors) of the 2d Ising model on a 20 x 20 lattice and to compare
them with the exact results of Ferdinand and Fisher (assignment a0501_03):

0
Energy per spin <eys>
Multicanonical data ———
-0.5
/\U)
e 1
V
-1.5 ¢
-2
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The same numerical data allow to calculate the specific heat defined by

dE 2 2 2
C = 7 = 0 (B —(E))

1.8 | Specific heat per spin ——— -

C/N
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The energy histogram of the multicanonical simulation together its canonically

re-weighted descendants at 3 =0, 6 = 0.2 and § = 0.4 (assignment a0501_04):

7000
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Histograms
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] I
multicanonical ————
* beta=0.0 ———

The normalization of the multicanonical histogram is adjusted so that it fits

into the same figure with the three re-weighted histograms.
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Similar data for the 2d 10-state Potts model, action variable actm data (assignment
a0501_05):
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Action variable g=10 ——  §
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The canonically re-weighted histogram at G = 0.71 together with the

multicanonical histogram using suitable normalizations (the ordinate is on a
logarithmic scale):
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The multicanonical method allows to estimate the interface tension of the
transition by following the minimum to maximum ratio over many orders of
magnitude (Berg and Neuhaus 1992):

100
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10'2 H

10_3 3

104 3
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Figure 1: Interface tension fit (Berg and Neuhaus 1992).
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Free Energy and Entropy Calculation

At 3 = 0 the Potts partition function is Zy = ¢. MUCA simulations allow
for proper normalization of the partition function, if 3 = 0 is included in the
temperature range. The properly normalized partition function allows to calculate
the properly normalized

Helmholtz free energy F = —f7 ! In(2)

and the F_E

= = §(F-F)
of the canonical ensemble. Here E is the expectation value of the internal energy
and the last equal sign holds because of our choice of units for the temperature.
For the 2d Ising model as well as for the 2d 10-state Potts model, we show in the

next figure multicanonical estimates of the free energy density per site

Entropy S =

f = F/N .
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Figure 2: Free energies from multicanonical simulations of the Ising and 10-state
Potts models on an 20 x 20 lattice (assignments a0501_03 and a0501_05). The
full lines are the exact results of Ferdinand and Fischer for the Ising model and the
asymptotic behavior f,s = E —2d—p~71 ln In(a) £or the 10-state Potts model.
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Entropy Density s = S/N :

>,xxxx%xxxx*¥*¥ "
K ox
Ko
*

0.7 ¢
0.6

0.5+
nw 04 r
0.3 r

0.2

0.1 10-state Potts =

0

0 0.2 0.4 0.6 0.8 1
B

Figure 3: Entropies from multicanonical simulations of the Ising and 10-state Potts
models on an 20 x 20 lattice (assignments a0501_03 and a0501_05). The full line
is the exact result of Ferdinand and Fischer for the Ising model.
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For the 2d Ising model one may also compare directly with the number of states.
Up to medium sized lattices this integer can be calculated to all digits by analytical
methods (Beale). MC results are only sensitive to the first few (not more than six)
digits and one finds no real advantages over using other physical quantities.

Time series analysis

Typically, one prefers in continuous systems time series data over keeping
histograms, because one avoids then dealing with the discretization errors. Even in
discrete systems time series data are of importance, as one often wants to measure
more physical quantities than just the energy. Then the RAM storage requirements
may require to use a time series instead of histograms. We illustrate this point,
using the Potts magnetization:

In assignments a0501_08 and a0501_09 we create the same statistics on 20 x 20
lattices as before, including time series measurements for the energy and also for the
Potts magnetization. For energy based observables the analysis of the histogram
and the time series data give consistent results.
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For zero magnetic field, H = 0, the expectation value of the Potts magnetization

on a finite lattice is

1
Mgy = (0g;,q0) = 67
independently of the temperature. For the multicanonical simulation each Potts

state is visited with probability 1/q also at low temperatures. In contrast to this,
the expectation value of the magnetization squared

1 & i
Mq20 = 4 <<N 25Qi,QO> >
1=1

is a non-trivial quantity. At § =0 its N — oo value is M7 = ¢ (1/¢)* = 1/q,
whereas it approaches 1 for 3 — oo. For ¢ = 2 and ¢ = 10 the next figure shows
our numerical results and we see that the crossover of Mgo from 1/q to 1 happens
in the neighborhood of the critical temperature. A FSS analysis would reveal that,
a singularity develops at (3., which is in the derivative of MqQO for the second order
phase transitions (¢ < 4) and in M, itself for the first order transitions (¢ > 5).
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Figure 4. The Potts magnetization per lattice site squared for the ¢ = 2 and ¢ = 10
Potts models on an 20 x 20 lattice (assignments a0501_08 and a0501_09).
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Summary

e \We considered Statistics, Markov Chain Monte Carlo simulations, the Statistical
Analysis of Markov chain data and, finally, Multicanonical Sampling.

e It is a strength of computer simulations that one can generate artificial (not
realized by nature) ensembles, which enhance the probabilities of rare events on
may be interested in, or speed up the dynamics.

e Nowadays Generalized Ensembles (umbrella, multicanonical, 1/k, ...) have
found many applications. Besides for first order phase transitions in particular
for Complex Systems such as biomolecules, where they accelerate the dynamics.
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