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We introduce two simple models with nearest neighbor interactions on 3D hexagonal lattices. Each
model allows one to calculate the residual entropy of ice I (ordinary ice) by means of multicanonical
simulations. This gives the correction to the residual entropy derived by Linus Pauling in 1935.
Our estimate is found to be within 0.13% of an analytical approximation by Nagle which is an
improvement of Pauling’s result. We pose it as a challenge to experimentalists to improve on the
accuracy of a 1936 measurement by Giauque and Stout by about one order of magnitude, which
would allow one to identify corrections to Pauling’s value unambiguously. It is straightforward to
transfer our methods to other crystal systems.

PACS: 61.50.Lt, 65.40.-b, 65.40.Gr, 05.70.-a, 05.20.-y, 2.50.Ng

A thorough understanding of the properties of water
has a long history and is of central importance for life
sciences. After the discovery of the hydrogen bond [1]
it was recognized that the unusual properties of water
and ice owe their existence to a combination of strong
directional polar interactions and a network of specifi-
cally arranged hydrogen bonds [2]. The liquid phase of
water differs from simple fluids in that there is a large
qualitative remnant of ice structure in the form of local
tetrahedral ordering [3].

In contrast to liquid water the properties of ice are rel-
atively well understood. Most of them have been inter-
preted in terms of crystal structures, the forces between
its constituent molecules, and the energy levels of the
molecules themselves [4,5]. A two-dimensional projection
of the hexagonal crystal structure of ordinary ice (ice I) is
depicted in Fig. 1 (other forms of ice occur in particular
at high pressures). Each oxygen atom is located at the
center of a tetrahedron and straight lines (bonds) through
the sites of the tetrahedron point towards four nearest-
neighbor oxygen atoms. Hydrogen atoms are distributed
according to the ice rules [2,6]: (A) There is one hy-
drogen atom on each bond (then called hydrogen bond).
(B) There are two hydrogen atoms near each oxygen
atom (these three atoms constitute a water molecule).

In our figure distances are given in units of a lat-
tice constant a, which is chosen to be the edge length
of the tetrahedra (this is not the conventional crystal-
lographic definition). For each molecule shown one of
the surface triangles of its tetrahedron is placed in the
xy-plane. The molecules labeled by u (up) are then at

z = 1/
√

24 above, and the molecules labeled by d (down)

at z = −1/
√

24 below the xy-plane, at the centers of
their tetrahedra. In our computer simulations informa-
tion about the molecules will be stored in arrays of length
N , N being the number of molecules.

Essentially by experimental discovery, extrapolating
low temperature calorimetric data (then available down
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FIG. 1. Lattice structure of one layer of ice I. The up (u)
sites are at z = 1/

√
24 and the down (d) sites at z = −1/

√
24.

For each site three of its four pointers to nearest neighbor sites
are shown.

to about 10◦K) towards zero absolute temperature, it
was found that ice has a residual entropy [7]:

S0 = k ln(W ) > 0 (1)

where W is the number of configurations for N molecules.
Subsequently Linus Pauling [6] derived estimates of W =
(W1)

N by two approximate methods, obtaining

WPauling
1 = 3/2 (2)

in each case. W = (W1)
N is the number of Pauling

configurations. Assuming that the H2O molecules are
essentially intact in ice, his arguments are:

1. A given molecule can orient itself in six ways sat-
isfying ice rule B. Choosing the orientations of all
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molecules at random, the chance that the adjacent
molecules permit a given orientation is 1/4. The
total number of configurations is thus W = (6/4)N .

2. Ignoring condition B of the ice rules, Pauling allows
22N configuration on the hydrogen bonds between
adjacent oxygen atoms: Each hydrogen nucleus is
given the choice of two positions, near to one of the
two oxygen atoms. At one oxygen atom there are
now sixteen arrangements of the four hydrogen nu-
clei. Of those ten are ruled out by ice rule B. This
condition for each oxygen atom permits 6/16 = 3/8
of the configurations. Accordingly, the total num-
ber of configurations becomes W = 22N (3/8)N .

Equation (2) converts to the residual entropy

SPauling
0 = 0.80574 . . . cal/deg/mole (3)

where we have used the gas constant value R =
8.314472 (15) [J/deg/mol] as of Aug. 20, 2006 given on
the NIST website [8] (relying on CODATA 2002 recom-
mended values). This in good agreement with the exper-
imental estimate

Sexperimental
0 = 0.82 (5) cal/deg/mole (4)

which was subsequently obtained by Giauque and
Stout [9] using refined calorimetry (we give error bars
with respect to the last digit(s) in parentheses).

Pauling’s arguments omit correlations, induced by
closed loops when one requires fulfillment of the ice rules
for all atoms, and it was shown by Onsager and Dupuis
[10] that W1 = 1.5 is in fact a lower bound. Onsager’s
student Nagle used a series expansion method to derive
the estimate [11]

WNagle
1 = 1.50685 (15) , (5)

or

SNagle
0 = 0.81480 (20) cal/deg/mole . (6)

Here, the error bar is not statistical but reflects higher
order corrections of the expansion, which are not entirely
under control. The slight difference between (6) and the
value in Nagle’s paper is likely due to improvements in
the measurements of Avogadro’s number [8]. The only
independent theoretical value appears to be one for cubic
ice, which is obtained by numerical integration of Monte
Carlo data [12] and in good agreement with Nagle [11].

Despite Nagle’s high precision estimate there has ap-
parently been almost no improvement on the accuracy of
the experimental value (4). Some of the difficulties are
addressed in a careful study by Haida et al. [13]. But
their final estimate remains (4) with no reduction of the
error bar. We noted that by treating the contributions in
their table 3 as statistically independent quantities and
using Gaussian error propagation (instead of adding up

the individual error bars), the final error bar becomes
reduced by almost a factor of two and their value would
then read S0 = 0.815 (26) cal/deg/mol. Still Pauling’s
value is safely within one standard deviation. Modern
electronic equipment should allow for a much better pre-
cision. We think that an experimental verification of the
difference to Pauling’s estimate would be an outstanding
confirmation of structures imposed by the ice rules.

In this paper we provide a novel high-precision numer-
ical estimate of S0 for ordinary ice. Our calculations
are based on two simple statistical models, which re-
flect Pauling’s arguments. Each model is defined on the
hexagonal lattice structure of Fig. 1.

In the first model, called 6-state H2O molecule model,
we allow for six distinct orientations of each H2O
molecule and define its energy by

E = −
∑

b

h(b, s1
b , s

2
b) . (7)

Here, the sum is over all bonds b of the lattice and (s1
b

and s2
b indicate the dependence on the states of the two

H2O molecules, which are connected by the bond)

h(b, s1
b , s

2
b) =

{

1 for a hydrogen bond,
0 otherwise.

(8)

In the second model, called 2-state H-bond model, we
do not consider distinct orientations of the molecule, but
allow two positions for each hydrogen nucleus on the
bonds. The energy is defined by

E = −
∑

s

f(s, b1
s, b

2
s, b

3
s, b

4
s) , (9)

where the sum is over all sites (oxygen atoms) of the
lattice. The function f is given by

f(s, b1
s, b

2
s, b

3
s, b

4
s) = (10)

{

2 for two hydrogen nuclei close to s,
1 for one or three hydrogen nuclei close to s,
0 for zero or four hydrogen nuclei close to s.

The groundstates of each model fulfill the ice rules. At
β = 0 the number of configurations is 6N for the 6-state
model and 22N for the 2-state model. Because the nor-
malizations at β = 0 are known, multicanonical (MUCA)
simulations [14] allow us in either case to estimate accu-
rately the number of groundstate configurations [15]. Su-
perficially both systems resemble Potts models (see, e.g.,
[16] for Potts model simulations), but their thermody-
namic properties are entirely different. For instance, we
do not find any sign of a disorder-order phase transition,
which is for our purposes advantageous as the MUCA es-
timates for the groundstate entropy become particularly
accurate. This absence of a bulk transition does not rule
out long-range correlations between bonds of the ground
state configurations, which are imposed by the conserva-
tion of the flow of hydrogen bonds at each molecule. In
that sense the ground state is a critical ensemble.
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TABLE I. Simulation data for W1.

N nx ny nz 6-state model 2-state model Q

W1 Ncyc W1 Ncyc

128 4 8 4 1.52852 (47) 1854 1.52869 (23) 7092 0.72

360 5 12 6 1.51522 (49) 223 1.51546 (15) 1096 0.65

576 6 12 8 1.51264 (18) 503 1.51279 (10) 1530 0.47

896 7 16 8 1.51075 (16) 208 1.51092 (06) 2317 0.32

1600 8 20 10 1.50939 (09) 215 1.50945 (05) 619 0.56

∞ (fit) 1.50741 (33) 1.50737 (17) 0.91

Using periodic boundary conditions (BCs), our simu-
lations are based on a lattice construction set up earlier
by one of us [17]. Following closely the method out-
lined in chapter 3.1.1 of [16] four index pointers from
each molecule to the array positions of its nearest neigh-
bor molecules are constructed. The order of pointers
one to three is indicated in Fig. 1. The fourth pointer
is up the z-direction for the u molecules and down the
z-direction for the d molecules. The lattice contains
then N = nx ny nz molecules, where nx, ny, and nz are
the number of sites along the x, y, and z axes, respec-
tively. The periodic BCs restrict the allowed values of nx,
ny, and nz to nx = 1, 2, 3, . . ., ny = 4, 8, 12, . . ., and
nz = 2, 4, 6, . . . . Otherwise the geometry does not close
properly. Using the inter-site distance rOO = 2.764 Å
from Ref. [5], the physical size of the box is obtained
by putting the lattice constant a to a = 2.257 Å, and
the physical dimensions of the box are calculated to be
Bx = 2nx a, By = (ny

√
3/2) a, Bz = (nz 4/

√
6) a. In

our choices of nx, ny, and nz values we aimed within
reasonable limitations at symmetrically sized boxes.

Table I compiles our MUCA W1 estimates for the lat-
tice sizes used. In each case a Wang-Landau recursion
[18] was used to estimate the MUCA parameters for
which besides a certain number of cycling events [16] a
flatness of Hmin/Hmax > 0.5 was considered sufficient for
stopping the recursion and starting the second part of
the MUCA simulation with fixed weights (H(E) is the
energy histogram, Hmin is the smallest and Hmax the
largest number of entries in the flattened energy range).

The statistics we used for measurements varied be-
tween 32 × 106 sweeps for our smallest and 64 × 107

sweeps for our largest lattice. Using two 2 GHz PCs
the simulations take less than one week. The number
of cycles, Ncyc, completed between βmin = 0 and the
groundstate are listed in the 6-state and 2-state model
columns of table I. As each of our simulations includes
the βmin = 0 canonical ensemble, the (logarithmically
coded) re-weighting procedure of chapter 5.1.5 of [16] de-
livers estimates for W1, which are compiled in the same
columns. Each error bar relies on 32 jackknife bins. As
expected, the values from both models are consistent as
is demonstrated by Q values of Gaussian difference tests
(see, e.g., chapter 2.1.3 of [16]) in the last column of the
table. The 2-state H-bond model gives more accurate es-
timates than the 6-state H2O molecule model, obviously
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FIG. 2. Fit for W1.

by the reason that the cycling time, which is ∝ 1/Ncyc, is
less for the former, because the energy range that needs
to be covered is smaller.

In Fig. 2 a fit for the data of the 2-state H-bond model
to the form

W1(x) = W1(0) + a1 xθ , x = 1/N (11)

is shown. The W1 = W1(0) estimate corresponding to
Fig. 2 is given in the the last row of the 2-state model
column of table I. The data point for the smallest lat-
tice is included in the fit, but not shown in the figure
where we like to focus on the large N region. The good-
ness of fit (chapter 2.8 of [16]) is Q = 0.47 as given in
the figure. Similarly the estimate for the 6-state H2O
molecule model in the last row of the table is obtained
with a goodness of fit Q = 0.78. All Q values (Gaus-
sian difference tests and fits) are in the range one would
expect for statistically consistent data. The θ values of
the fits were also consistent and their combined value is
θ = 0.923 (23). That we have θ 6= 1 reflects bond corre-
lations in the groundstate ensemble.

Combining the two fit results weighted by their error
bars leads to our final estimate

WMUCA
1 = 1.50738 (16) . (12)

This converts into

SMUCA
0 = 0.81550 (21) cal/deg/mole . (13)

for the residual entropy.
The difference between (12) and the estimate of Na-

gle (5) is 0.035% of the estimated W1 value (0.086% of
S0), which is much smaller than any foreseeable experi-
mental error. However, within their own error bars the
Gaussian difference test between the two estimates yields
Q = 0.016. As the error bar in (12) covers and no sys-
tematic errors due to finite size corrections from larger
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lattices, the small discrepancy with Nagle’s result may
well be explained this way. In view of the large error
bar in the experimental estimate it appears somewhat
academic to trace the ultimate reason.

As already (hesitatingly) pointed out by Pauling [6],
the real entropy at zero temperature is not expected to
agree with the residual entropy extrapolated from low
but non-zero temperatures. In real ice one expects a
small splitting of the energy levels of the Pauling configu-
ration, which are degenerate in both of our models. Once
the thermal fluctuations become small compared with
these energy differences, the entropy will become lower
than the residual entropy calculated here. Such an effect
is observed in [13] by annealing ice I at temperatures be-
tween 85◦K and 110◦K. Refined models are needed to
gain computational insights. Crossing this temperature
range sufficiently fast allows one still to extract the resid-
ual entropy, because the relaxation time has become so
long that one does not have ordering of Pauling states
during typical experimental observation times.

It is clear that our method carries rather easily over
to other crystal structures for which one may want to
calculate a residual entropy. Interesting systems ???. In
particular structural defects can be included. As soon as
changes in the energy splitting matter, like for doping,
one would need more realistic models. Limitations in lat-
tice sizes may turn out to be an obstacle against reaching
very small densities for defects or impurities (one needs
on changed molecule per lattice).

Good modeling of water is of crucial importance for
computational progress in biophysics. Clusters of hydro-
gen bonds play a prominent role in water at room tem-
perature. Our method allows to calculate the combina-
torial factors W N

1 with which small clusters ought to be
calculated in phenomenological water models like those
discussed in Ref. [3]. Through a better understanding of
hydrogen bond clusters insights derived from the study
of ordinary ice may well be of importance for improving
on models [19], which have primarily been constructed to
reflect properties of water under room temperatures and
pressures.
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