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(8) Perform the two-parameter fit (3.124) for the βc(L) values of table 3.16

to obtain the L → ∞ estimate given in the text.

(9) Check for assignments 1, 2, 3, 4 and 7 (L = 24), whether the assump-

tion that the binned data are Gaussian distributed passes the upper

and lower one-sided Kolmogorov tests (2.142). This is best done by

running the program ana kol.f of ForProg/MC Potts in the folders

of assignments 1, 2, 3, 4 and 7, where the parameter and data files

ought to be located. For the interpretation compare assignment 3 in

section 2.6.4.

3.5 Specific Heat, Reweighting, Error Bars and Jackknife

With Ê = 〈E〉 the specific heat is defined by

C =
d Ê

d T
= β2

(
〈E2〉 − 〈E〉2

)
. (3.126)

The last equal sign follows by working out the temperature derivative in

(3.2) and is known as fluctuation-dissipation theorem. It is often used

to estimate the specific heat from equilibrium simulations without relying

on numerical derivatives. An equivalent formulation is

C = β2

〈(
E − Ê

)2
〉

(3.127)

as is easily shown by expanding
(
E − Ê

)2

and working out the expectation

values. Defining

act2lm =
iactm2

mlink
, (3.128)

and using the relation with the energy (3.116), we have instead of (3.126)

a notation, which is close to the computer code:

C =
β2 N d2

n

n∑

i=1

(
act2li − actlm2

)
, (3.129)

where the sum is over all measurements in the times series. Translating

(3.127) similarly gives

C =
β2 N d2

n

n∑

i=1

(actli − actlm)2 . (3.130)
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When energy histograms are available, (3.130) is calculated by the equa-

tions used in potts mu2.f of ForLib.

In the limit of an infinite statistics specific heat estimates from all these

equation agree. But with a finite statistics a number of problems emerge.

In the simple binning approach (1.133), where nrpt of the production run

defines the number of blocks, one may want to use for Ê estimators Ei

which are constructed from the histograms of the blocks. With Nb the

number of data in each bin and Hi the energy histogram of block i:

Ei =
1

Nb

∑

j∈block(i)

Ej =

∑
E E Hi(E)∑

E Hi(E)
. (3.131)

Estimates of Ci from either equation (3.126) or (3.127) agree then and

Gaussian error bars are expected due to the binning. However, for a not

so good statistics as bias towards too small Ci values is occurs, because Ej

and Ei come from the same block in the estimate

Ci =
β2

Nb

∑

j∈block(i)

(
E 2

j − E
2

i

)
=

β2
∑

E

(
E 2 − E

2

i

)
Hi(E)

∑
E Hi(E)

(3.132)

=
β2

Nb

∑

j∈block(i)

(
Ej − Ei

)2
=

β2
∑

E(E − Ei)
2 Hi(E)∑

E Hi(E)
. (3.133)

The Ei estimators are certainly inferior to the estimate E, which relies

on the entire statistics. Therefore, one may consider to use E instead of

Ei in equations (3.132) and (3.133). However, then one does not know

anymore how to calculate the error bar of C as the Ci estimates would

rely on overlapping data. The situation gets even worse when we include

reweighting (3.33), as this non-linear procedure implies that the estimators

(3.132) and (3.133) will in general differ. These difficulties are overcome

by the jackknife method of chapter 2.7. When histograms can be used the

fast way to create jackknife bins is to sum first the entire statistics (HSUM

in the code):

H(E) =

Nb∑

i=1

Hi(E) . (3.134)

Subsequently jackknife histograms (superscript J) are defined by

HJ
i (E) = H(E) − Hi(E) (3.135)
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Fig. 3.8 Energy histogram from random sampling of the 2d Ising model on a 4×4 lattice
together with is reweighting to β0 = 0.2 and β0 = 0.4 (see assignment 1).

and jackknife estimates C
J

i are obtained by using HJ
i (E) instead of Hi(E)

in equations (3.131), (3.132) and (3.133).

In the following we compare results obtained by several variants of sim-

ple binning to those of the jackknife method. To pin down the subtleties of

the statistical analysis we first consider the rather extrem case of reweight-

ing of random sampling on a lattice which is small enough to allow for

the calculation of its partition function at all temperatures. Afterwards we

perform a canonical simulations of the 2D Ising model on larger lattices

and reweight the specific heat to a small neighbourhood of the simulation

temperature.

3.5.1 Reweighting of random sampling

To illustrate the jackknife method, we consider again reweighting of random

sampling. On a 4 × 4 lattice the Ising model has 216 = 65 536 states. This
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is small enough to generate them all by random sampling. For the large

statistics of assignment 1 figure 3.8 depicts on a log scale the histogram of

random sampling together with its reweighting to β0 = 0.2 and β0 = 0.4.

As all energies are covered we are able to calculate the specific heat at all

temperatures. If the statistics is very large, simple binning gives reliable

results. However, problems are encountered when the statistics covers some

states barely.

Table 3.17 Calculation of the specific heat by reweighting of random sampling for the
Ising model on a 4 × 4 lattice (assignments 2 to 4).

Statistics: (a) 32 × 30 000 32 × 3 108 10 000 times (a)

Estimate Q Estimate Q Estimate Q

Simple binning:

C x.xxx (xx) x.xx x.xxxxx (xx) x.xx − −

with mean from entire statistics:

C via (3.129) x.xx (xx) x.xx x.xxxx (xx) x.xx − −

C via (3.130) x.xxxx (xx) x.xx x.xxxxx (xx) x.xx x.xxxxx (xx) 0.00

Jacknife binning:

C x.xxxx (xx) x.xx x.xxxxx (xx) x.xx x.xxxxx (xx) x.xx

bias corrected x.xxxx (xx) x.xx x.xxxxx (xx) x.xx x.xxxxx (xx) x.xx

In assignment 2 we generate the rather small statistics of 32 × 30 000

sweeps. Resulting estimates of the specific heat are shown in column two of

table 3.17. First simple binning is used as in equations (3.132) and (3.133),

which are identical as the Ej and Ei rely on the same measurement for

each bin. The estimate is unsatisfactory, because comparison with the

exact result

C = 0.812515

from ferdinand.f (3.16) gives Q = 0.00 for the Gaussian difference test

(2.33). We try to improve on this by using the average energy E of the

entire statistics in equations (3.132) and (3.133), which are then non longer

identical. In the table the computer notation of these equation, (3.129) and

(3.130), is quoted. The observation is that (3.129) fails entirely, while the

estimate from (3.130) is good. The bad estimate comes because the error

of the fluctuations of the second moment used in (3.129) are large, whereas

the reduced second moment used in (3.130) enforces a positive result with

smaller fluctuations. In either case E is entered without statistical error,

because its fluctuations are small compared to those of Ej .
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Fig. 3.9 Empirical peaked distribution function of three estimators of the specific heat
of the Ising model as discussed in the text.

To demonstrate that the bad estimator does still converge towards the

exact result we increase in assignment 3 our statistics by a factor of 1 000.

As shown in column 4 of the table, the value has become reasonable when

compared with the exact result, but the error bar is five times larger than

for the other estimators, which agree very well with one another. Indepen-

dently of any increase of the statistics the fluctuations of the bad estimator

stay to large, because they are calculated with respect to zero instead of E.

Using jackknife bins, the estimates (3.129) and (3.130) ar identical again,

and the goodness of fit is satisfactory. However, it remains inconclusive

whether there is an advantage compared to the simple binning estimates

(3.130) in column two. Also, there is no improvement when we use equation

(2.168) to correct for the bias (we keep the error bars of the jackknife

estimators as the bias turns out to be small compared to them, so that

a next level jackknife analysis is not necessary). The results are so close

to one another that we cannot draw conclusions about the quality of the
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estimators from a single low statistics run. To get to the bottom of this

we repeat 10 000 times in assignment 4 the low statistics simulation of

assignment 2. From these simulation averages and error bars with respect

to the 10 000 repetitions are given in column 6 of table 3.17. Only the

bias corrected jackknife estimator averages to an acceptable value.

The uncorrected jackknife estimator comes in second and the good simple

binning estimate third. Figure 3.9 depicts the empirical peaked distribution

functions (1.46) of these estimates. As there is no disadvantage in applying

jackknife instead of simple binning: The jackknife method should in

essence always be used.

3.5.2 Reweighting of a canonical simulation

In real applications reweighting is mostly of importance when one wants

to locate maxima of observables such as the specific heat. In assignment 5

canomnical MC simulations are performed at for the 2d Ising model at

β = 0.43, which is relatively close to βc. After reweighting bias corrected

jackknife estimates of the specific heat are calculated and plotted in fig-

ure 3.10.

Maxima of the specific heat are clearly within the reweighting range

and the peak is more pronounced on the larger lattice. On the other hand

the reweighted values start to deviate on the larger lattice from the exact

curve at the boundary of the chosen β range. That reflects the shrinking

of the reweighting range with increasing lattice size. A fit of the L depence

of the location of the peak allows, however, to determine a good value for

the simulation temperature on the next larger lattice and so one. FSS

investigation can be performed by iterating such a process. After introduc-

ing more advanced simulation algorithms FSS techniques are discussed in

chapter 7.4.

3.5.3 Assignments for section 3.5

As in the previous assignment sections we use always Marsaglia random

number with their default seed.

(1) Repeat the reweighting to β0 = 0.2 of assignment 2 of section 3.1 on

a 4 × 4 lattice. Reweight also to β0 = 0.4. Increase the statistics by a

factor of ten.



October 11, 2007 9:18 WSPC/Book Trim Size for 9in x 6in cl09

Markov Chain Monte Carlo 205

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0.38  0.4  0.42  0.44  0.46  0.48

C

β

L=20 exact
L=20 rwght
L=10 exact
L=10 rwght

Fig. 3.10 Specific heat of the Ising model on L × L lattices. Exact result produced by
the program ferdinand.f (3.16) versus reweighting of simulations from β = 0.43.

(2) Use random sampling to create a statistics of 32×30 000 sweeps for the

2d Ising model on on a 4× 4 lattice. Reweight to β0 = 0.4 and perform

the following estimates: actlm using simple binning, actlm from all

data, C using simple binning, C using (3.129) with simple binning and

actlm from all data, C using (3.130) with simple binning and actlm

from all data, C from jackknife binning, and the bias corrected C.

(3) Increase the statistics of the previous assignment to 32 × 3 108 and

show that all estimators give now reasonable results. But are their

error bars consistent in the sense of the F-test. If not, which of the

error bars should one trust?

(4) Repeat 10 000 times the analysis of assignment 2 for the good estima-

tor of simple binning, the jacknife and the biased improved jackknife

estimator. Compute mean values and their standard deviations with

respect to the 10 000 events in each case.
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(5) Use the Metropolis algorithm to simulate the Ising model on 10 × 10

and 20× 20 lattices at β = 0.43. Reweight to the β0 range [0.38 : 0.48]

and plot bias corrected jackknife estimates of the specific heat together

with the exact result for C(β). For the 20 × 20 lattice: Compare the

estimates of actlm from simple binning and from jackknife binning

(a) at β = 0.43 (no reweighting) and (b) at β = 0.40 (reweighting).

3.6 Continuous Systems

MC simulations of systems with continuous variables face additional diffi-

culties. Histogramming of the observables leads to discretization errors and

it is better to keep the time series. However, keeping too many data can

slow down the code and exhaust available storage facilities. One may also

become concerned that the discretization of the Marsaglia random numbers

will matter. Any resolution smaller than ǫMarsaglia = 2−24 = 1/16, 777, 216

needs special attention and one may want to employ ranmar2.f (1.22).

Another complication is that rounding errors may limit the bit by bit re-

producibility of our numerical results, see below.

To give an impression about dealing with continuous systems, we con-

sider simulations of O(n), n ≥ 2 spin systems in d ≥ 1 dimensions.

The systems are defined by equations (3.64) to (3.67), only that we al-

low now for n-component spins, instead of just for n = 3 (n = 1 is

the Ising model). Of particular physical interest are the cases n = 3,

which we introduced in section 3.2.2, and the n = 2 planar rotator,

also called XY model. According to [Kosterlitz and Thouless (1973);

Kosterlitz (1974)] there exists a low temperature phase of the d = 2 planar

rotator which is characterized by a power law decay in the pair correlation

function, modified by the presence of pairs of vortices. The vortex pairs un-

bind at the critical temperature to create a high temperature phase where

the correlations decay exponentially. In this way the transition does not

violate the theorem by [Mermin and Wagner (1966)], which forbids spon-

taneous breaking of a continuous symmetry in two dimensions. [Coleman

(1973)] explains the rationale behind the Mermin-Wagner theorem as fol-

lows: The breaking of a continuous symmetry leads to massless Goldstone

bosons, but this is not possible in two dimensions where the massless scalar

field fails to exist.

It is straightforward to write an O(n) Metropolis code for generic n ≥

2 values, see the next subsection. The code illustrates the simplicity of


