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Statistical Errors of Markov Chain MC Data

In large scale MC simulation it may take months, possibly years, of computer
time to collect the necessary statistics. For such data a thorough error analysis is a
must. A typical MC simulation falls into two parts:

1. Equilibration: Initial sweeps are performed to reach the equilibrium distribution.
During these sweeps measurements are either not taken at all or have to be
discarded when calculating equilibrium expectation values.

2. Production: Sweeps with measurements are performed. Equilibrium expectation
values are calculated from this statistics.

A rule of thumb is: Do not spend more than 50% of your CPU time on
measurements! The reason for this rule is that, that one cannot be off by a factor
worse than two (

√
2 in the statistical error).

How many sweeps should be discarded for reaching equilibrium?
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In a few situations this question can be rigorously answered with the Coupling
from the Past method (Propp and Wilson).

The next best thing to do is to measure the integrated autocorrelation time
self-consistently and to discard, after reaching a visually satisfactory situations, a
number of sweeps which is larger than the integrated autocorrelation time. In
practice even this can often not be achieved.

Therefore, it is re-assuring that it is sufficient to pick the number of discarded
sweeps approximately right. With an increasing statistics the contribution of the
non-equilibrium data dies out like 1/N , where N is the number of measurements.
For large N the effect is eventually swallowed by the statistical error, which declines
only like 1/

√
N . The point of discarding configurations for reaching equilibrium is

that the factor in front of 1/N can be large.

There can be far more involved situations, like that the Markov chain may end
up in metastable configurations, which may even stay unnoticed (e.g. complex
systems like spin glasses or proteins).
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Autocorrelations

We like to estimate the expectation value f̂ of some physical observable. We
assume that the system has reached equilibrium. How many MC sweeps are needed
to estimate f̂ with some desired accuracy? To answer this question, one has to
understand the autocorrelations within the Markov chain.

Given is a time series of N measurements

fi = fi(xi), i = 1, . . . , N

from a Markov process, where xi are the configurations generated. The label
i = 1, . . . , N runs in the temporal order of the Markov chain and the elapsed
time, measured in updates or sweeps, between subsequent measurements fi, fi+1

is always the same, independently of i. The estimator of the expectation value f̂ is

f =
1
N

∑
fi .
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With the notation
t = |i− j|

the definition of the autocorrelation function of the observable f̂ is

Ĉ(t) = Ĉij = 〈 (fi − 〈fi〉) (fj − 〈fj〉) 〉 = 〈fifj〉 − 〈fi〉 〈fj〉 = 〈f0ft〉 − f̂ 2 (1)

where we used that translation invariance in time holds for the equilibrium ensemble.
The asymptotic behavior for large t is

Ĉ(t) ∼ exp
(
− t

τexp

)
for t →∞,

where τexp is called (exponential) autocorrelation time and is related to the second
largest eigenvalue λ1 of the transition matrix by

τexp = − 1
lnλ1
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under the assumption that f has a non-zero projection on the corresponding
eigenstate. Superselection rules are possible so that different autocorrelation times
reign for different operators.

The variance of f is a special case of the autocorrelations (1)

Ĉ(0) = σ2(f) .

Some algebra shows that the variance of the estimator f of the mean is now

σ2(f) =
σ2(f)

N

[
1 + 2

N−1∑
t=1

(
1− t

N

)
ĉ(t)

]
with ĉ(t) =

Ĉ(t)

Ĉ(0)
.

This equation ought to be compared with the corresponding equation for
uncorrelated random variables σ2(f) = σ2(f)/N . The difference is the factor
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in the bracket which defines the integrated autocorrelation time

τint =

[
1 + 2

N−1∑
t=1

(
1− t

N

)
ĉ(t)

]
.

For correlated data the variance of the mean is by the factor τint larger than the
corresponding naive variance for uncorrelated data:

τint =
σ2(f)

σ2
naive(f)

with σ2
naive =

σ2(f)
N

. (2)

In most simulations one is interested in the limit N →∞ and τint becomes

τint = 1 + 2
∞∑

t=1

ĉ(t) . (3)

The numerical estimation of the integrated autocorrelation time faces difficulties.
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The variance of the estimator of τint diverges for N →∞:

τ int = 1 + 2
∞∑

t=1

c(t) and σ2(τ int) → ∞

because for large t each c(t) adds a constant amount of noise, whereas the signal
dies out like exp(−t/τexp). To obtain an estimate one considers the t-dependent
estimator

τ int(t) = 1 + 2
t∑

t′=1

c(t′)

of the integrated autocorrelation time and looks out for a window in t for which
τ int(t) is flat. To give a simple example, let us assume that the autocorrelation
function is governed by a single exponential autocorrelation time

Ĉ(t) = const exp
(
− t

τexp

)
.
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In this case we can carry out the sum (3) for the integrated autocorrelation
function and find

τint = 1 + 2
∞∑

t=1

e−t/τexp = 1 +
2 e−1/τexp

1− e−1/τexp
.

In particular, the difference between the asymptotic value and the finite t definition
becomes then

τint − τint(t) = 2 e−t/τexp

∞∑
t′=1

e−t′/τexp =
2 e−(t+1)/τexp

1− e−1/τexp
.

For a large exponential autocorrelation time τexp � 1 the approximation

τint = 1 +
2 e−1/τexp

1− e−1/τexp

∼= 1 +
2− 2/τexp

1/τexp
= 2 τexp − 1 ∼= 2 τexp

holds.
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Integrated Autocorrelation Time and Binning

Using binning the integrated autocorrelation time can also be estimated via the
variance ratio. We bin the time series into Nbs ≤ N bins of

Nb = NBIN =
[

N

Nbs

]
=

[
NDAT

NBINS

]
data each. Here [.] stands for Fortran integer division, i.e., Nb = NBIN is the

largest integer ≤ N/Nbs, implying Nba · Nb ≤ N . It is convenient to choose the
values of N and Nbs so that N is a multiple of Nbs. The binned data are the
averages

f
Nb
j =

1
Nb

jNb∑
i=1+(j−1)Nb

fi for j = 1, . . . , Nbs .

For Nb > τexp the autocorrelations are essentially reduced to those between
neighbor bins and even these approach zero under further increase of the binlength.
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For a set of Nbs binned data f
Nb
j , (j = 1, . . . , Nbs) we may calculate the mean

with its naive error bar. Assuming for the moment an infinite time series, we find
the integrated autocorrelation time (2) from the following ratio of sample variances

τint = lim
Nb→∞

τ
Nb
int with τ

Nb
int =

s2

f
Nb

s2
f

 . (4)

In practice the Nb → ∞ limit will be reached for a sufficiently large, finite value
of Nb. The statistical error of the τint estimate (4) is, in the first approximation,
determined by the errors of s2

f
Nb

. The typical situation is then that, due to the

central limit theorem, the binned data are approximately Gaussian, so that the error
of s2

f
Nb

is analytically known from the χ2 distribution. Finally, the fluctuations of

s2
f

of the denominator give rise to a small correction which can be worked out.

Numerically most accurate estimates of τint are obtained for the finite binlength
Nb which is just large enough that the binned data are practically uncorrelated.
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For applications it is convenient to choose N and Nb to be powers of 2. In the
following we assume

N = 2K, K ≥ 4 and Nb = 2Kb with Kb = 0, 1, . . . ,K − 5,K − 4. (5)

Choosing the maximum value of Kb to be K − 4 implies that the smallest number
of bins is

Nmin
bs = 24 = 16 . (6)

While the Student distribution shows that the confidence intervals of the error bars
from 16 uncorrelated normal data are reasonable approximations to those of the
Gaussian standard deviation, about 1000 independent data are needed to provide
a decent estimate of the corresponding variance (at the 95% confidence level with
an accuracy of slightly better than 10%).

It makes sense to work with error bars from 16 binned data, but the error of the
error bar, and hence a reliable estimate of τint, requires far more data.

12



Illustration: Metropolis generation of normally distributed data

We generate normally distributed data according to the Markov process

x′ = x + 2 a xr − a (7)

where x is the event at hand, xr a uniformly distributed random number in the
range [0, 1), and the real number a > 0 is a parameter which relates to the efficiency
of the algorithm. The new event x′ is accepted with the Metropolis probability

Paccept(x′) =
{

1 for x′ 2 ≤ x2;
exp[−(x′ 2 − x2)/2] for x′ 2 > x2.

(8)

If x′ is rejected, the event x is counted again. The Metropolis process introduces
an autocorrelation time in the generation of normally distributed random data.

We work with K = 17, i.e., N = 217 = 131072, data and take a = 3 for the
Markov process (7), what gives an acceptance rate of approximately 50%.
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The autocorrelation function (assignment a0401 01):
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Figure 1: The autocorrelation function. Upper data: Metropolis time series for the
normal distribution. Lower data: Gaussian random number generator. For t ≥ 11
the inlay shows the autocorrelations on an enlarged ordinate. The straight lines
between the data points are just to guide the eyes. The curves start with C(0) ≈ 1
because the variance of the normal distribution is one.
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Integrated autocorrelation time (assignment a0401 02):
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Figure 2: Upper curves in the figure and its inlays: τint(t). Lowest curve: Gaussian
random number generator. Remaining curves: Binning estimators of the integrated
autocorrelation time with one standard deviation bounds. The main figure relies on
221 data, the first inlay on 217 data, and the second inlay relies on 214 data.
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We compare the τ
Nb
int estimators with the direct estimators τint(t) at

t = Nb − 1 . (9)

With this relation the estimators agree for binlength Nb = 1 and for larger Nb

the relation gives the range over which we combine data into either one of the
estimators. The approach of the binning procedure towards the asymptotic τint

value is slower than that of the direct estimate of τint.

For our large NDAT = 221 data set τint(t) reaches its plateau before t = 20.
All the error bars within the plateau are strongly correlated. Therefore, it is not
recommendable to make an attempt to combine them. Instead, it is save to pick
an appropriate single value and its error bar as the final estimate:

τint = τint(20) = 3.962± 0.024 from 221 = 2, 097, 152 data. (10)

The binning procedure, on the other hand, shows an increase of τ
Nb
int all the way to
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Nb = 27 = 128, where the estimate with the one confidence level error bounds is

3.85 ≤ τ128
int ≤ 3.94 from 214 = 16, 384 bins from 221 data .

How many data are needed to allow for a meaningful estimate of the integrated
autocorrelation time?

For the statistics of NDAT = 217 the autocorrelation signal disappears for t ≥ 11
into the statistical noise. Still, there is clear evidence of the hoped for window of
almost constant estimates. A conservative choice is to take t = 20 again, which
now gives

τint = τint(20) = 3.86± 0.11 from 217 data .

Worse is the binning estimate, which for the 217 data is

3.55 ≤ τ32
int ≤ 3.71 from 212 = 4, 096 bins from 217 = 131, 072 data .

Our best value (10) is no longer covered by the two standard deviation zone.

17



For the second inlay the statistics is reduced to NDAT = 214. With the
integrated autocorrelation time rounded to 4, this is 4096 times τint. For binlength
Nb = 24 = 16 we are then down to Nbs = 1024 bins, which are needed for accurate
error bars of the error. To work with this number we limit, in accordance with
equation (9), our τint(t) plot to the range t ≤ 15. Still, we find a quite nice
window of nearly constant τint(t), namely all the way from t = 4 to t = 15. By
a statistical fluctuation (assignment a0401 03) τint(t) takes its maximum value at
t = 7 and this makes τint(7) = 3.54±0.13 a natural candidate. However, this value
is inconsistent with our best estimate (10). The true τint(t) increases monotonically
as function of t, so we know that the estimators have become bad for t > 7. The
error bar at t = 7 is obviously too small to take care of our difficulties. One may
combine the t = 15 error bar. In this way the result is

τint = 3.54± 0.21 for 214 = 16, 384 data, (11)

which achieves consistency in the two error bar range. For binlength Nb = 16 the

18



binning estimate is

2.93 ≤ τ16
int ≤ 3.20 from 210 = 1, 024 bins from 214 data. (12)

Clearly, the binlength Nb = 16 is too small for an estimate of the integrated
autocorrelation time. We learn from this investigation that one needs a binlength
of at least ten times the integrated autocorrelation time τint, whereas for the direct
estimate it is sufficient to have t about four times larger than τint.

19



Self-consistent versus reasonable error analysis

By visual inspection of the time series, one may get an impression about the
length of the out-of-equilibrium part of the simulation. On top of this one should
allow > τint sweeps for the system to settle. A second reason why it appears
necessary to control the the integrated autocorrelation times are the statistical
errors of our measurements. Ideally the error bars are calculated as

4f =
√

σ2(f) with σ2(f) = τint
σ2(f)

N
.

This constitutes a self-consistent error analysis of a MC simulation.

However, the calculation of the integrated autocorrelation time may be out of
reach. According to the Student distribution about twenty independent data are
sufficient to estimate mean values with reasonably reliable error bars, while one
thousand are needed for a 10% error on the error bar at the two sigma confidence
level.
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In practice, one has to be content with what can be done. Often this means to
rely on the binning method. We simply calculate error bars of our ever increasing
statistics with respect to a fixed number of NBINS bins, where

NBINS ≥ 16

are large enough values. In addition, we may put 10% of the initially planned
simulation time apart for reaching equilibrium. A-posteriori, this can always be
increased. Once the statistics is large enough, this means at least tmax > NBINS τint

for the largest t of our time series, our small number of binned data become
effectively independent.

How do we know that the statistics has become large enough? In practical
applications there can be indirect arguments, which tell or suggest us that the
integrated autocorrelation time is in fact (much) smaller than the achieved bin
length. This is no longer self-consistent, as we perform no explicit measurement of
τint, but it is a reasonable error analysis.
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Comparison of Markov chain MC algorithms

Is the 1-hit Metropolis algorithm more efficient with sequential updating or with
random updating (assignment a0402 01 B)?
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Figure 3: Integrated autocorrelation times of the Metropolis process with random
updating versus sequential updating for the d = 2 Ising model at β = 0.4 The
ordering of the curves is identical with that of the labels in the figure.
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The d = 2 Ising model off and on the critical point (assignment a0402 01 A).
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Figure 4: One-hit Metropolis algorithm with sequential updating: Lattice size
dependence of the integrated autocorrelation time for the d = 2 Ising model at
β = 0.4. The ordering of the curves is identical with that of the labels in the figure.
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Critical slowing down: Increase of the τint ∼ Lz at the critical point, where
z ≈ 2 is the dynamical critical exponent (assignment a0402 02 D). Estimates of z
are compiled in the book by Landau and Binder.

0

500

1000

1500

2000

2500

0 1000 2000 3000 4000 5000 6000 7000 8000

τ in
t

t

L=160 ts1
L= 80 ts1
L= 40 ts1
L= 20 ts1

Figure 5: One-hit Metropolis algorithm with sequential updating: L dependence
of the integrated autocorrelation time for the d = 2 Ising model at its critical
temperature. The ordering of the curves is identical with that of the labels.
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Another MC dynamics, Swendsen-Wang (SW) and Wolff (W) cluster algorithm:
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Figure 6: Estimates of integrated autocorrelation times from simulations of the
d = 2 Ising model at the critical temperature βc = 0.44068679351 (assignment
a0503 05).

25



Metropolis versus heat bath updating for the 10-state d = 2 Potts model:
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Figure 7: Systematic updating: Comparison of the integrated autocorrelation times
of the 1-hit and 2-hit Metropolis algorithms and the heat bath algorithm for the
10-state Potts model on L× L lattices at β = 0.62 (assignment a0402 06). The
L = 40 and L = 80 curves lie almost on top of one another.

26


