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3.5 Specific Heat, Reweighting, Error Bars and Jackknife

With Ê = 〈E〉 the specific heat is defined by

C =
d Ê

d T
= β2

(
〈E2〉 − 〈E〉2

)
. (3.126)

The last equal sign follows by working out the temperature derivative in

(3.2) and is known as fluctuation-dissipation theorem. It is often used

to estimate the specific heat from equilibrium simulations without relying

on numerical derivatives. An equivalent formulation is

C = β2

〈(
E − Ê

)2
〉

(3.127)

as is easily shown by expanding
(
E − Ê

)2

and working out the expectation

values. Defining

act2l =

(
iact

mlink

)2

, (3.128)

and using the relation with the energy, we have instead of (3.126) a notation,

which is close to the computer code:

C =
β2 N d2

n

n∑

i=1

(
act2li − actlm2

)
, (3.129)

where the sum is over all measurements in the times series. Translating

(3.127) similarly gives

C =
β2 N d2

n

n∑

i=1

(actli − actlm)2 . (3.130)

When energy histograms are available, (3.130) is calculated by the equa-

tions used in potts mu2.f of ForLib.

In the limit of infinite statistics specific heat estimates from these equa-

tions agree. With finite statistics a number of problems emerge. In the

simple binning approach, where nrpt of the production run defines the

number of blocks, one may want to use for Ê estimators Ei which are con-

structed from the histograms of the blocks. With Nb the number of data
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in each bin and Hi the energy histogram of block i:

Ei =
1

Nb

∑

j∈block(i)

Ej =

∑
E E Hi(E)∑

E Hi(E)
. (3.131)

Estimates of Ci from either equation (3.126) or (3.127) agree then and

Gaussian error bars are expected due to the binning. However, for a not so

good statistics a bias towards too small Ci values occurs, because Ej and

Ei come from the same block in the estimate

Ci =
β2

Nb

∑

j∈block(i)

(
E 2

j − E
2

i

)
=

β2
∑

E

(
E 2 − E

2

i

)
Hi(E)

∑
E Hi(E)

(3.132)

=
β2

Nb

∑

j∈block(i)

(
Ej − Ei

)2
=

β2
∑

E(E − Ei)
2 Hi(E)∑

E Hi(E)
. (3.133)

The Ei estimators are certainly inferior to the estimate E, which relies

on the entire statistics. Therefore, one may consider to use E instead of

Ei in equations (3.132) and (3.133). However, then one does not know

anymore how to calculate the error bar of C as the Ci estimates would

rely on overlapping data. The situation gets even worse when we include

reweighting (3.33), as this non-linear procedure implies that the estimators

(3.132) and (3.133) will in general differ. These difficulties are overcome

by the jackknife method of chapter 2.7. When histograms can be used the

fast way to create jackknife bins is to sum first the entire statistics (HSUM

in the code):

H(E) =

Nb∑

i=1

Hi(E) . (3.134)

Subsequently jackknife histograms (superscript J) are defined by

HJ
i (E) = H(E) − Hi(E) (3.135)

and jackknife estimates C
J

i are obtained by using HJ
i (E) instead of Hi(E)

in equations (3.131), (3.132) and (3.133).

In the following we compare results obtained by several variants of sim-

ple binning to those of the jackknife method. To pin down the subtleties of

the statistical analysis we first consider the rather extreme case of reweight-

ing of random sampling on a lattice which is small enough to allow for the

calculation of its partition function at all temperatures. Afterwards we
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Fig. 3.8 Energy histogram from random sampling of the 2d Ising model on a 4×4 lattice
together with is reweighting to β0 = 0.2 and β0 = 0.4 (see assignment 1).

perform a canonical simulations of the 2D Ising model on larger lattices

and reweight the specific heat to a small neighborhood of the simulation

temperature.

3.5.1 Reweighting of random sampling

To illustrate the jackknife method, we consider again reweighting of random

sampling. On a 4 × 4 lattice the Ising model has 216 = 65 536 states. This

is small enough to generate them all by random sampling. For the large

statistics of assignment 1 figure 3.8 depicts on a log scale the histogram of

random sampling together with its reweighting to β0 = 0.2 and β0 = 0.4.

As all energies are covered we are able to calculate the specific heat at all

temperatures. If the statistics is very large, simple binning gives reliable

results. Problems are encountered when the statistics covers some states

barely.

In assignment 2 we generate the rather small statistics of 32 × 30 000
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Table 3.17 Calculation of the specific heat by reweighting of random sampling for the
Ising model on a 4 × 4 lattice (assignments 2 to 4).

Statistics: (a) 32 × 30 000 32 × 3 108 10 000 times (a)

Estimate Q Estimate Q Estimate Q

Simple binning:

C 0.656 (30) 0.00 0.81241 (13) 0.42 − −

with mean from entire statistics:

C via (3.129) −0.58 (73) 0.60 0.8123 (66) 0.97 − −

C via (3.130) 0.8072 (95) 0.58 0.81242 (13) 0.46 0.79077 (28) 0.00

Jackknife binning:

C 0.8132 (83) 0.93 0.81242 (13) 0.46 0.80769 (16) 0.00

bias corrected 0.8172 (83) 0.57 0.81242 (13) 0.46 0.81257 (16) 0.73

sweeps. Resulting estimates of the specific heat are shown in column two of

table 3.17. First simple binning is used as in equations (3.132) and (3.133),

which are identical as Ej and Ei rely on the same measurement for each

bin. The estimate is unsatisfactory, because comparison with the exact

result

C = 0.812515

from ferdinand.f (3.16) gives Q = 0.00 for the Gaussian difference test

(2.33). We try to improve on this by using the average energy E of the entire

statistics in equations (3.132) and (3.133), which are then no longer identi-

cal. From the table the observation is that (3.132) fails entirely, while the

estimate from (3.133) is good. The bad estimate comes because the fluctu-

ations of the second moment used in (3.132) are large, whereas the reduced

second moment used in (3.130) enforces a positive result with smaller fluc-

tuations. In either case E is entered without statistical error, because its

fluctuations are small compared to those of single measurements Ej .

To demonstrate that the bad estimator does also converge towards the

exact result we increase in assignment 3 our statistics by a factor of 1 000.

As shown in column 4 of the table, the value has become reasonable when

compared with the exact result, but the error bar is five times larger than

for the other estimators, which agree very well with one another. Indepen-

dently of any increase of the statistics, the fluctuations of the bad estimator

stay to large, because they are calculated with respect to zero instead of E.

Using jackknife bins, the estimates (3.129) and (3.130) are identical

again, and the goodness of fit is satisfactory. However, it remains incon-

clusive whether there is an advantage compared to the simple binning es-
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Fig. 3.9 Empirical peaked distribution function of three estimators of the specific heat
of the Ising model as discussed in the text (assignment 4).

timates (3.130) in column two. Also, there is no improvement when we

use equation (2.168) to correct for the bias (we keep the error bars of the

jackknife estimators as the bias turns out to be small compared to them,

so that a next level jackknife analysis is not necessary). The results of the

two methods are so close to one another that we cannot draw conclusions

about the quality of the estimators from a single low statistics run. To

get to the bottom of this we repeat 10 000 times in assignment 4 the low

statistics simulation of assignment 2. From these simulation averages and

error bars with respect to the 10 000 repetitions are given in column 6 of

table 3.17. Only the bias corrected jackknife estimator averages to

an acceptable value. The uncorrected jackknife estimator comes in sec-

ond and the simple binning estimate third. Figure 3.9 depicts the empirical

peaked distribution functions (1.47) of these estimates. As there is no dis-

advantage in applying jackknife instead of simple binning: The jackknife

method should in essence always be used.
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Fig. 3.10 Specific heat of the Ising model on L×L lattices. Exact results produced by the
program ferdinand.f versus reweighting of simulations from β = 0.43 (assignment 5).

3.5.2 Reweighting of a canonical simulation

In real applications reweighting is mostly of importance when one wants

to locate maxima of observables such as the specific heat. In assignment 5

canonical MC simulations are performed for the 2d Ising model at β = 0.43,

which is relatively close to βc. After reweighting, bias corrected jackknife

estimates of the specific heat are calculated and plotted in figure 3.10.

Maxima of the specific heat are clearly within the reweighting range and

the peak is more pronounced on the larger lattice. On the other hand, the

reweighted values start to deviate on the larger lattice from the exact curve

at the boundary of the chosen β range. That reflects the shrinking of the

reweighting range with increasing lattice size. A fit of the L dependence of

the location of the peak allows, however, to determine a good value for the

simulation temperature on the next larger lattice, and so on. Finite size

scaling investigations can be performed by iterating such a process.
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3.5.3 Assignments for section 3.5

As in the previous assignment sections we use always Marsaglia random

numbers with their default seed.

(1) Repeat the reweighting to β0 = 0.2 of assignment 2 of section 3.1 on

a 4 × 4 lattice. Reweight also to β0 = 0.4. Increase the statistics by a

factor of ten.

(2) Use random sampling to create a statistics of 32×30 000 sweeps for the

2d Ising model on a 4×4 lattice. Reweight to β0 = 0.4 and perform the

following estimates: actlm using simple binning, actlm from all data,

C using simple binning, C using (3.129) with simple binning and actlm

from all data, C using (3.130) with simple binning and actlm from all

data, C from jackknife binning, and the bias corrected C.

(3) Increase the statistics of the previous assignment to 32 × 3 108 and

show that all estimators give now reasonable results. But, are their

error bars consistent in the sense of the F-test. If not, which of the

error bars should one trust?

(4) Repeat 10 000 times the analysis of assignment 2 for the good estimator

of simple binning using the actlm from all data, for the jackknife and

the biased improved jackknife estimator. Compute mean values and

their standard deviations with respect to the 10 000 events in each case.

(5) Use the Metropolis algorithm to simulate the Ising model on 10 × 10

and 20× 20 lattices at β = 0.43. Reweight to the β0 range [0.38 : 0.48]

and plot bias corrected jackknife estimates of the specific heat together

with the exact result for C(β).


