
Random Number Generator of STMC
and simple Monte Carlo Integration

Bernd Berg

FSU MCMC Course, August 26, September 2, 2008



Random Numbers and Fortran Code

According to Marsaglia and collaborators a list of desirable properties for random
number generators is:

(i) Randomness. The generator should pass stringent tests for randomness.

(ii) Long period.

(iii) Computational efficiency.

(iv) Repeatability. Initial conditions (seed values) completely determine the
resulting sequence of random variables.

(v) Portability. Identical sequences of random variables may be produced on a
wide variety of computers (for given seed values).

1



(vi) Homogeneity. All subsets of bits of the numbers are random.

Physicists have added a number of their applications as new tests. In particular
the exact solution of the 2d Ising model is used.

Frequently used is the congruential random number generator. It is based on
the recursion

In = (a In−1 + b) mod(m) (1)

where In, a, b and m are integers. Uniformly distributed random numbers are then
defined by the real numbers

xn = In/m . (2)

Theorems (see the book by Knuth) state that good choices of the integer constants
a, b and m exists, so that the series of random numbers becomes a permutation

π0, π1, . . . πm−2, πm−1 (3)

of 0, 1, . . . m− 2, m− 1.

2



In STMC the random number generator by Marsaglia and collaborators is
provided. It has a period 2144 and fulfills also the other desirable properties well. It
relies on a combination of two generators:

xn from a lagged Fibonacci series In = In−r − In−s mod224, r = 97, s = 33.

yn from the arithmetic series I − k, I − 2k, I − 3k, . . . , mod [224 − 3].

For most applications this generator is a good compromise. Our Fortran code
which implements Marsaglia random numbers consists of three subroutines:

rmaset.f to set the initial state of the random number generator.

ranmar.f which provides one random number per call.

rmasave.f to save the final state of the generator.

3



The subroutine rmaset.f continues a saved state or initializes the generator to
independent sequences of random numbers defined by distinct pairs of seeds:

−1801 ≤ iseed1 ≤ 29527 and − 9373 ≤ iseed2 ≤ 20708 . (4)

This property makes the generator quite useful for parallel processing.

Table 1: Illustration of a start and a continuations run of the Marsaglia random
number generator using the program mar.f with the default seeds (a0102 02).

RANMAR INITIALIZED. MARSAGLIA CONTINUATION.
idat, xr = 1 0.116391063 idat, xr = 1 0.495856345
idat, xr = 2 0.96484679 idat, xr = 2 0.577386141
idat, xr = 3 0.882970393 idat, xr = 3 0.942340136
idat, xr = 4 0.420486867 idat, xr = 4 0.243162394
extra xr = 0.495856345 extra xr = 0.550126791

4



How to get and run the FORTRAN code?

STMC

ForProgAssignments ForLib ForProc Work

a0102_02 a0102_03 ... ... a0103_01 ... ...

Figure 1: The Fortran routines are provided and prepared to run in the a tree structure of folders

depicted in this figure. This tree of directories unfolds from the downloaded file.

To download the Fortran code book visit the book website and follow the
instructions given there.

5



The code is provided in the directories ForLib, ForProg and ForProc. ForLib
contains a library of functions and subroutines which is closed in the sense that
no reference to non-standard functions or subroutines outside the library is ever
made. Fortran programs are contained in the folder ForProg and procedures for
interactive use in ForProc.

Assignment: Marsaglia random numbers. See coursework website.
Understand how to re-start the random number generator as well as how to
perform different starts when the continuation data file ranmar.d does not exist.

Note: To compile properly, main programs have to be located two levels down
from a root directory STMC.

The hyperstructure of program dependencies introduced between the levels
of the STMC directory tree should be kept intact!

(Unless you really know better.)

6



Simple Monte Carlo (MC) Integration

Uniformly distributed random number allow one to evaluate integrals of the
form ∫

Volume

ddx f(x1, . . . , xd)

where the Volume is defined by constraints. The method is very general, but
only efficient as long as the volume constraints and the function f are sufficiently
well-behaved (regular).

Examples (classwork and homework):

1. Calculation of π from

π =
∫

x2+y2<1

dx dy .

7



2. Calculation of the integrals∫
x2<sin(y),y2<cos(x)

dx dy

and ∫
x2<sin(y),y2<cos(x)

dx dy er with r =
√

x2 + y2 .

8


