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The Central Limit Theorem and Binning

How is the sum of two independent random variables

yr = xr
1 + xr

2 . (1)

distributed? We denote the probability density of yr by g(y). The corresponding
cumulative distribution function is given by

G(y) =
∫

x1+x2≤y

f1(x1) f2(x2) dx1 dx2 =
∫ +∞

−∞
f1(x) F2(y − x) dx

where F2(x) is the distribution function of the random variable xr
2. We take the

derivative and obtain the probability density of yr

g(y) =
dG(y)

dy
=

∫ +∞

−∞
f1(x) f2(y − x) dx . (2)
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The probability density of a sum of two independent random variables is the
convolution of the probability densities of these random variables.

Example: Sums of uniform random numbers, corresponding to the sums of an
uniformly distributed random variable xr ∈ (0, 1]: (a) Let yr = xr + xr, then

g2(y) =

{
y for 0 ≤ y ≤ 1,
2− y for 1 ≤ y ≤ 2,
0 elsewhere.

(3)

(b) Let y r = xr + xr + xr, then

g3(y) =


y2/2 for 0 ≤ y ≤ 1,
(−2y2 + 6y − 3)/2 for 1 ≤ y ≤ 2,
(y − 3)2/2 for 2 ≤ y ≤ 3,
0 elsewhere.

(4)
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The convolution (2) takes on a simple form in Fourier space. In statistics the
Fourier transformation of the probability density is known as characteristic function,
defined as the expectation value of eitxr

:

φ(t) = 〈eitxr
〉 =

∫ +∞

−∞
eitx f(x) dx . (5)

The characteristic function is particularly useful for investigating sums of random
variables, yr = xr

1 + xr
2:

φy(t) =
〈
eitxr

1+itxr
2

〉
=

∫ +∞

−∞

∫ +∞

−∞
eitx1 eitx2 f1(x1) f2(x2) dx1 dx2 = φx1(t) φx2(t) .

The characteristic function of a sum of random variables is the product of their
characteristic functions. The result generalizes immediately to N random variables

yr = xr
1 + . . . + xr

N . (6)
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The characteristic function of yr is

φy(t) =
N∏

i=1

φxi
(t) (7)

and the probability density of yr is the Fourier back-transformation of this
characteristic function

g(y) =
1
2π

∫ +∞

−∞
dt e−ity φy(t) . (8)

The probability density of the sample mean is obtained as follows: The arithmetic
mean of yr is x r = yr/N . We denote the probability density of yr by gN(y) and
the probability density of the arithmetic mean by ĝN(x). They are related by

ĝN(x) = N gN(Nx) . (9)

Proof:
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Substitute y = Nx into gN(y) dy:

1 =
∫ +∞

−∞
gN(y) dy =

∫ +∞

−∞
gN(Nx) Ndx =

∫ +∞

−∞
ĝN(x) dx .

Example:
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Figure 1: Probability densities for the arithmetic means of two to six uniformly distributed random

variables, bg2(x) and bg3(x), respectively.
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This suggests that sampling leads to convergence of the mean by reducing its
variance. We use the characteristic function to understand the general behavior.
The characteristic function of a sum of independent random variables is the product
of their individual characteristic functions

φy(t) = [φx(t)]N . (10)

The characteristic function for the corresponding arithmetic average is

φx(t) =
∫ +∞

−∞
dx eitx ĝN(x) =

∫ +∞

−∞
Ndx eitx gN(Nx)

=
∫ +∞

−∞
dy exp

(
i

t

N
y

)
gN(y) .

Hence,

φx(t) = φy

(
t

N

)
=

[
φx

(
t

N

)]N

. (11)
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Example: The normal distribution.

The characteristic function is obtained by Gaussian integration

φ(t) = exp
(
−1

2
σ2t2

)
. (12)

Defining yr = xr + xr we have

φy(t) = [φ(t)]2 = exp
(
−1

2
2σ2t2

)
. (13)

This is the characteristic function of a Gaussian with variance 2σ2. We obtain
the characteristic function of the arithmetic average x r = yr/2 by the substitution
t → t/2:

φx(t) = exp
(
−1

2
σ2

2
t2

)
. (14)

The variance is reduced by a factor of two.
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The Central Limit Theorem

To simplify the equations we restrict ourselves to x̂ = 0. Let us consider a
probability density f(x) and assume that its moment exists, implying that the
characteristic function is a least two times differentiable, so that

φx(t) = 1 − σ2
x

2
t2 + O(t3) . (15)

The leading term reflects the the normalization of the probability density and the
first moment is φ′(0) = x̂ = 0. The characteristic function of the mean becomes

φx(t) =
[
1 − σ2

x

2N2
t2 + O

(
t3

N3

)]N

= exp
[
−1

2
σ2

x

N
t2

]
+ O

(
t3

N2

)
.
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The probability density of the arithmetic mean x r converges
towards the Gaussian probability density with variance

σ2(x r) =
σ2(xr)

N
. (16)

A Counter example: The Cauchy distribution provides an instructive, case for
which the central limit theorem does not work. This is expected as its second
moment does not exist.

Nevertheless, the characteristic function of the Cauchy distribution exists. For
simplicity we take α = 1 and get

φ(t) =
∫ +∞

−∞
dx

eitx

π (1 + x2)
= exp(−|t|) . (17)
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The integration involves the residue theorem. Using equation (11) for the
characteristic function of the mean of N random variables, we find

φx(t) =
[
exp

(
−|t|

N

)]n

= exp(−|t|) . (18)

The surprisingly simple result is that the probability distribution for the mean values
of N independent Cauchy random variables agrees with the probability distribution
of a single Cauchy random variable. Estimates of the Cauchy mean cannot be
obtained by sampling. Indeed, the mean does not exist.

Generalized limit theorems exist for broad distributions, like those given by a
probability density

f(x) =
a

2(1 + |x|)1+a
, 0 < a ≤ 2 .

This goes sometimes under the name Levy statistics, but is in the Russian literature
more closely associated with work by Khintchine.
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Binning

The notion of introduced here should not be confused with histograming!
Binning means here that we group NDAT data into NBINS bins, where each binned
data point is the arithmetic average of

NBIN = [NDAT/NBINS] (Fortran integer division.)

original data points. Preferably NDAT is a multiple of NBINS. The purpose of the
binning procedure is twofold:

1. When the the central limit theorem applies, the binned data will become
practically Gaussian, as soon as NBIN becomes large enough. This allows to
apply Gaussian error analysis methods even when the original are not Gaussian.

2. When data are generated by a Markov process subsequent events are correlated.
For binned data these correlations are reduced and can be neglected, once NBIN
is sufficiently large compared to the autocorrelation time.
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Example:
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Figure 2: Comparison of a histogram of 500 binned data with the normal distributionp
(120/π) exp[−120 (x − 1/2)2]. Each binned data point is the average of 20 uniformly

distributed random numbers. Assignment a0108 02.
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Gaussian Error Analysis for Large and Small Samples

The central limit theorem underlines the importance of the normal distribution.
Assuming we have a large enough sample, the arithmetic mean of a suitable
expectation value becomes normally distributed and the calculation of the confidence
intervals is reduced to studying the normal distribution. It has become the
convention to use the standard deviation of the sample mean

σ = σ(x r) with x r =
1
N

N∑
i=1

xr
i (19)

to indicate its confidence intervals [x̂− nσ, x̂ + nσ] (the dependence of σ on N is
suppressed). For a Gaussian distribution the probability content p of the confidence
intervals (19) to be

p = p(n) = G(nσ)−G(−nσ) =
1√
2π

∫ +n

−n

dx e−
1
2x2

= erf
(

n√
2

)
. (20)
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Table 1: Probability content p of Gaussian confidence intervals [x̂ − nσ, x̂ + nσ],
n = 1, . . . , 6, and q = (1− p)/2. Assignment a0201 01.

n 1 2 3 4 5
p .68 .95 1.0 1.0 1.0
q .16 .23E-01 .13E-02 .32E-04 .29E-06

In practice the roles of x and x̂ are interchanged: One would like to know
the likelihood that the unknown exact expectation value x̂ will be in a certain
confidence interval around the measured sample mean. The relationship

x ∈ [x̂− nσ, x̂ + nσ] ⇐⇒ x̂ ∈ [x− nσ, x + nσ] (21)

solves the problem. Conventionally, these estimates are quoted as

x̂ = x±4x (22)

where the error bar 4x is often an estimator of the exact standard deviation.
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An obvious estimator for the variance σ2
x is

(s′ rx )2 =
1
N

N∑
i=1

(xr
i − x r)2 (23)

where the prime indicates that we shall not be happy with it, because we encounter
a bias. An estimator is said to be biased when its expectation value does not agree
with the exact result. In our case

〈(s′ rx )2〉 6= σ2
x . (24)

An estimator whose expectation value agrees with the true expectation value is
called unbiased. For the variance it is rather straightforward to construct an
unbiased estimator (sr

x)x. The bias of the definition (23) comes from replacing the
exact mean x̂ by its estimator x r. The latter is a random variable, whereas the
former is just a number.
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Some algebra shows that the desired unbiased estimator of the variance is given
by

(sr
x)2 =

N

N − 1
(s′ rx )2 =

1
N − 1

N∑
i=1

(xr
i − x r)2 . (25)

Correspondingly, the unbiased estimator of the variance of the sample mean is

(sr
x)2 =

1
N(N − 1)

N∑
i=1

(xr
i − x r)2 . (26)

Our workhorse for error bar calculations from data is the routines steb0.f of
ForLib used via

CALL STEB0(NDAT, DAT, DATM, DATV, DATME) .

See today’s classwork.
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Gaussian difference test

In practice one is often faced with the problem to compare two different empirical
estimates of some mean. How large must D = x− y be in order to indicate a real
difference? The quotient

dr =
Dr

σD
(27)

is normally distributed with expectation zero and variance one, so that

P = P (|dr| ≤ d) = G0(d)−G0(−d) = 1− 2 G0(−d) = erf
(

d√
2

)
. (28)

The likelihood that the observed difference |x− y| is due to chance is defined to be

Q = 1− P = 2 G0(−d) = 1− erf
(

d√
2

)
. (29)

If the data set are sampled from identical Gaussian distributions, Q is a uniformly
distributed random variable in the range [0, 1). Example: See today’s classwork.
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Gosset’s Student Distribution

We ask the question: What happens with the Gaussian confidence limits when
we replace the variance σ2

x by its estimator s2
x in statements like

|x− x̂|
σx

< 1.96 with 95% probability.

For sampling from a Gaussian distribution the answer was given by Gosset, who
published his article 1908 under the pseudonym Student in Biometrika. He showed
that the distribution of the random variable

tr =
x r − x̂

sr
x

(30)

is given by the probability density

f(t) =
1

(N − 1) B(1/2, (N − 1)/2)

(
1 +

t2

N − 1

)−N
2

. (31)
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Figure 3: Probability densities of some student distributions.
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Here B(x, y) is the beta function. The fall-off is a power law |t|−f for |t| → ∞.
Confidence probabilities of the Student distribution are:

N \ S 1.0000 2.0000 3.0000 4.0000 5.0000
2 .50000 .70483 .79517 .84404 .87433
3 .57735 .81650 .90453 .94281 .96225
4 .60900 .86067 .94233 .97199 .98461
8 .64938 .91438 .98006 .99481 .99843
16 .66683 .93605 .99103 .99884 .99984
64 .67886 .95018 .99614 .99983 1.0000

INFINITY: .68269 .95450 .99730 .99994 1.0000

For N ≤ 4 we find substantial deviations from the Gaussian confidence levels.
Up to two standard deviations reasonable approximations of Gaussian confidence
limits are obtained for N ≥ 16 data. If desired, the Student distribution function
can always be used to calculate the exact confidence limits.
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Student Difference Test

This test takes into account that only a finite number of events are sampled.
Let the following (normal distributed) data be given

x calculated from M events, i .e., σ2
x = σ2

x/M (32)

y calculated from N events, i .e., σ2
y = σ2

y/N (33)

and an unbiased estimators of the variances

s2
x = s2

x/M =
∑M

i=1(xi − x)2

M (M − 1)
and s2

y = s2
y/N =

∑N
j=1(yj − y)2

N (N − 1)
. (34)

Under the additional assumption σ2
x = σ2

y the probability

P (|x− y| > d) (35)

is is determined by the Student distribution function. Example: Todays’s classwork.
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More examples: Student difference test for x1 = 1.00 ± 0.05 from M data and
x2 = 1.20± 0.05 from N data (assignment a0203 03):

M 512 32 16 16 4 3 2
N 512 32 16 4 4 3 2
Q 0.0048 0.0063 0.0083 0.072 0.030 0.047 0.11

The Gaussian difference test gives Q = 0.0047. For M = N = 512 the Student
Q value is practically identical with the Gaussian result, for M = N = 16 it has
almost doubled. Likelihoods above a 5% cut-off, are only obtained for M = N = 2
(11%) and M = 16, N = 4 (7%). The latter result looks a bit surprising, because
its Q value is smaller than for M = N = 4. The explanation is that for M = 16,
N = 4 data one would expect the N = 4 error bar to be two times larger than the
M = 16 error bar, whereas the estimated error bars are identical.

This leads to the question: Assume data are sampled from the same normal
distribution, when are two measured error bars consistent and when not? Answered
later by: χ2 Distribution, Error of the Error Bar, and Variance Ratio Test.
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χ2 Distribution, Error of the Error Bar, Variance Ratio Test

For normally distributed data with mean zero the random variable

(χr)2 =
f∑

i=1

(yr
i )

2 , (36)

defines the χ2 distribution of f degrees of freedom. The study of the variance
(sr

x)2 of a Gaussian sample can be reduced to the χ2-distribution with f = N − 1

(χr
f)2 =

(N − 1) (sr
x)2

σ2
x

=
N∑

i=1

(xr
i − x r)2

σ2
x

. (37)

The probability density of χ2 per degree of freedom (pdf) is

fN(χ2) = Nf(Nχ2) =
a e−aχ2 (

aχ2
)a−1

Γ(a)
where a =

N

2
. (38)
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For N = 1, 2, . . . , 20 this probability density is plotted in the figure and we can
see the central limit theorem at work. Picking the curves at χ2/N = 1, increasing
fN(χ2) values correspond to increasing N = 1, 2, . . . , 20. Assignment a0202 03.
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The Error of the Error Bar

For normally distributed data the number of data alone determines the errors
of error bars, because the χ2 distribution is exactly known. One does not have to
rely on estimators! Confidence intervals for variance estimates s2

x = 1 from NDAT
data (assignment a0204 01):

q q q 1-q 1-q

NDAT=2**K .025 .150 .500 .850 .975

2 1 .199 .483 2.198 27.960 1018.255
4 2 .321 .564 1.268 3.760 13.902
8 3 .437 .651 1.103 2.084 4.142
16 4 .546 .728 1.046 1.579 2.395
32 5 .643 .792 1.022 1.349 1.768

1024 10 .919 .956 1.001 1.048 1.093
16384 14 .979 .989 1.000 1.012 1.022
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Variance ratio test (F -test)

We assume that two sets of normal data are given together with estimates
of their variances σ2

x1
and σ2

x2
:

(
s2

x1
, N1

)
and

(
s2

x2
, N2

)
. We would like to test

whether the ratio F =
s2
x1

s2
x2

differs from F = 1. With fi = Ni − 1, i = 1, 2

The probability
f1

f2
F < w is H(w) = 1−BI

(
1

w + 1
,
1
2

f2,
1
2

f1

)
.

This test allows us later to compare the efficiency of MC algorithms.

Examples: Today’s classwork.
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Statistical Bootstrap for Mean Values

This approach is best done in three steps:

1. Block (bin) the data into NDAT blocked data.

2. Sample without replacement from the blocked data a sample of NBTR mean
estimates, the bootstrap sample. See subroutine bootstrp.f.

3. Sort the bootstrp sample and estimate confidence limits from the Cumulative
Distribution Function (CDF). See subroutine bootstrp.f.

Example: See classwork (pi estimate again).

Typically, the method is useful when one has relatively few independent data
and/or the distribution of the estimated mean values is not Gaussian.
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