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Statistical Physics and Potts Model

MC simulations of systems described by the Gibbs canonical ensemble aim at
calculating estimators of physical observables at a temperature T'. In the following
we choose units so that 3 = 1/T and consider the calculation of the expectation
value of an observable J. Mathematically all systems on a computer are discrete,
because a finite word length has to be used. Hence,

K
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where Z = Z(8) = Ze_ﬁE(k) (2)
k=1
is the partition function. The index kK = 1,..., K labels all configurations (or

microstates) of the system, and E*) is the (internal) energy of configuration k.
To distinguish the configuration index from other indices, it is put in parenthesis.




We introduce generalized Potts models in an external magnetic field on d-
dimensional hypercubic lattices with periodic boundary conditions. Without being
overly complicated, these models are general enough to illustrate the essential
features we are interested in. In addition, various subcases of these models are
by themselves of physical interest. Generalizations of the algorithmic concepts to
other models are straightforward, although technical complications may arise.

We define the energy function of the system by
—BE® = _gE™ + o M® (3)

where 5 d N
By = =23 Jiylaq)”) 6™ qf) + Y (4)
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The sum (ij) is over the nearest neighbor lattice sites and g\

o~ 1s called the
Potts spin or Potts state of configuration k at site ¢. For the g-state Potts model
qz(k) takes on the values 1,...,q. The external magnetic field is chosen to interact
with the state ¢; = 1 at each site i, but not with the other states ¢; # 1. The
Jii(qi,q5), (¢ =1,...,¢;q; = 1,...,q) functions define the exchange coupling
constants between the states at site ¢ and site j. The energy function describes a

number of physically interesting situations. With
Jii(qi,q;) =J >0 (conventionally J =1) (5)

the original model is recovered and ¢ = 2 becomes equivalent to the Ising
ferromagnet. The Ising case of Edwards-Anderson spin glasses and quadrupolar
Potts glasses are obtained when the exchange constants are quenched random
variables. Other choices of the J;; include anti-ferromagnets and the fully frustrated
Ising model.

For the energy per spin the notation is: e; = E/N .




The normalization is chosen so that es agrees for ¢ = 2 with the conventional
Ising model definition, 3 = glsing = ghotts /5

For the 2d Potts models a number of exact results are known in the infinite
volume limit, mainly due to work by Baxter. The phase transition temperatures are

— otts — c = — = = 1 1 , — 2, 3’ « e e e 6
At 3. the average energy per state is
C C 4
eos=Eo/N=§—2—2/\/§- (7)

The phase transition is second order for ¢ < 4 and first order for ¢ > 5 for which
the exact infinite volume latent heats Aegs and entropy jumps As were also found
by Baxter, while the interface tensions f, were derived later.




Some Potts Configurations (2d, ¢ = 10)

1. Ordered with small fluctuations.
2. Disordered droplet in ordered background.

3. Percolated disordered phase (order-disorder separation)
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Sampling and Re-weighting

For the Ising model it is straightforward to sample statistically independent
configurations. We simply have to generate N spins, each either up or down, each
with 50% likelihood. This is called random sampling, see the figure.
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Figure 1: Energy histograms of 100 000 entries each for the Ising model on an 20 x 20 lattice:
Random Sampling gives statistically independent configurations at 3 = 0. Histograms at 8 = 0.2
and 8 = 0.4 are generated by Markov chain MC. Re-weighting of the 5 = 0 random configurations
to B8 = 0.2 is shown to fail (assignments a0301_02 and a0303_02).
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Is is very important to distinguish the energy measurements ez on single
configurations from the expectation value expectation value 5. The expectation
value e is a single number, while e, fluctuates. From the measurement of many
es values one finds estimators of its moments. The mean is is denoted by e5 and
fluctuates.

Histogram entries at 3 = 0 can be re-weighted, so that they correspond to
other 3 values. We simply have to multiply the entry corresponding to energy E by
cgexp(—0BFE). Similarly histograms corresponding to the Gibbs ensemble at some
value By can be re-weighted to other 3 values. (Care has to be taken to ensure
that the involved arguments of the exponential function do not become too large!
This can be done by logarithmic coding.)

Re-weighting has a long history. For Finite Size Scaling (FSS) investigations of
second order phase transitions its usefulness has been stressed by Ferrenberg
and Swendsen (accurate determinations of peaks of the specific heat or of
susceptibilities).
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In the figure re-weighting is done from 5y = 0 to 8 = 0.2. But, by comparison
to the histogram from a Metropolis MC calculation at 8 = 0.2, the result is seen
to be disastrous. The reason is easily identified: In the range where the 3 = 0.2
histogram takes on its maximum, the 8 = 0 histogram has not a single entry,
2.€., our naive sampling procedure misses the important configurations at 3 = 0.2.
Re-weighting to new (3 values works only in a range By = A3, where AG — 0 in
the infinite volume limit.

Important Configurations

Let us determine the important contributions to the partition function. The
partition function can be re-written as a sum over energies

Z=2(9) =y n(E)e " (8)

where the unnormalized spectral density n(FE) is defined as the number of
microstates k£ with energy E (remember, on the computer energy values are
always discrete).
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For a fixed value of 3 the energy probability density
P(E) = cgn(B) " (9)

is peaked around the average value E(ﬁ) where cg is a normalization constant so
that the >, Pg(E) =1 holds (consider the limits 3 =0 and § — 0.)

Away from phase transitions the width of the energy distribution is AE ~ V.
This follows from the fact that, away from phase transition points, the fluctuations
of the NV ~ V lattice spins are essentially uncorrelated, so that the magnitude of
a typical fluctuations is ~ v/N. From this we find that the re-weighting range is
NG ~ 1/\/V as the energy is an extensive quantity ~ V so that ABE ~ vV can
stay within the fluctuation of the system.

Interestingly, the re-weighting range increases at second order phase transitions,
because critical fluctuations are larger than non-critical fluctuations. Namely,
one has AE ~ V¥ with 1/2 < x < 1 and the requirement AGE ~ V7 yields
AR~ VETL
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For first order phase transitions one has a latent heat AV ~ V, but this does not
mean that the re-weighting range becomes of order one. In essence, the fluctuations
collapse, because the two phases become separated by an interfacial tension. One
is back to fluctuations within either of the two phases, i.e. AG ~ 1/\/7

The important configurations at temperature T' = 1/ are at the energy values
for which the probability density Pg(FE) is large. To sample them efficiently, one
needs a procedure which generates the configurations with their Boltzmann weights

w® = ¢=BEY (10)

The number of configurations n(FE) and the weights combine then so that the
probability to generate a configuration at energy E becomes precisely Pg(E) as
given by equation (9).
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Importance Sampling and Markov Chain Monte Carlo

For the canonical ensemble importance sampling generates configurations k
with probability

Pé ) = ¢ wj(g) = cp e AEY : cp constant . (11)

The state vector (P](;)), for which the configurations are the vector indices, is
called Boltzmann state. The expectation value becomes the arithmetic average:

O=0(8)=(0)= lim Z On) (12)

Ng—o00 NK

When the sum is truncated we obtain an estimator of the expectation value:

Nk

_ 1
O=—3 On) 13
NK; (13)
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Normally, we cannot generate configurations k directly with probability (11).
But they may be found as members of the equilibrium distribution of a
dynamic process. In practice Markov chains are used. A Markov process
Is a particularly simple dynamic process, which generates configuration k11
stochastically from configuration k,, so that no information about previous
configurations k,_1,k,_2, ... iIs needed. The elements of the Markov chain
time series are the configurations. Assume that the configuration & is given. Let
the transition probability to create the configuration [ in one step from k be given
by W& = W[k — I]. In essence, the matrix

W= (W<l><k>) (14)

defines the Markov process. Note, that this transition matrix is a very big (never
stored in the computer!), because its labels are the configurations. To achieve
our goal to generate configurations with the desired probabilities, the matrix W is
required to satisfy the following properties:
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(i) Ergodicity (Irreducibility in Math Literature):

e PEY 5 0 and e P 5 0 imply : (15)
an integer number n > 0 exists so that (W")()(*) > 0 holds.

(ii)) Normalization:
> wiht =1 (16)
l

(iii) Balance (Stationarity):

k

Balance means: The Boltzmann state (11) is an eigenvector with eigenvalue 1
of the transition matrix W = (W ®K)),
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In statistical physics the ensemble notation is frequently used. By definition,
an ensemble is a collection of configurations so that to each configuration k£ a
probability P¥) is assigned, Dk P%) = 1. The Gibbs or Boltzmann ensemble Ep
is defined to be the ensemble with probability distribution (11).

An equilibrium ensemble E, of the Markov process is defined by its probability
distribution P, satisfying

W Peq = Peg, in components P{) =Y w®O®pE (18)
k

Theorem: Under conditions (i), (ii) and (iii) the Boltzmann ensemble is the only
equilibrium ensemble of the Markov process and an attractive fixed-point.
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Proof: Let us first define a distance between ensembles. Suppose we have two
ensembles E and E’, each of which is a collection of many configurations. Denote

the probability for configuration k in E by P(*) and in E’ by P'"™ We define the
distance between E and E’ to be

1E-g| =Y |p® - p¥] (19)
k

where the sum goes over all configurations. Suppose that E’ resulted from the
application of the transition matrix W to the ensemble E. We can compare the
distance of E’ from the Boltzmann ensemble with the distance of E from the

Boltzmann ensemble:
|E' = Egll = 3 | > wO® P - PyY)
k

l
< Z Z ‘ WK (P(k’) — Pl(gk)) ‘ (using the triangle inequality)
Ik

(using balance)
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= Z ‘ Pk — Pék) (using WO®) > 0 and normalization)
k
= |[|[E—-EB] . (20)

The last line is obtained by making use of the condition », WK =1 and of
W (k) > 0. This shows that the Markov process can reduce the distance between
an ensemble E and the Boltzmann ensemble E's and will never increase this
distance. Ergodicity is needed to proof that the Boltzmann ensemble is the only
equilibrium ensemble and to rule out the equality in the < sign in equation (20).
We now study the approach to the fixed point and derive and explicit equation for
the convergence.

The matrix W by itself is normally not ergodic. Instead, due to the finiteness
of the system, a number n exists, so that the matrix WW = W™ is ergodic. This
means, all matrix elements of VW are larger than zero. In particular, excluding
states with infinite energy from our considerations,
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1 > wyin = IIlillIl (W(k)(l)) > 0 (21)

holds. Let us assume that the state vectors P and P’ are related by
P = WP. (22)
As shown in the following, this implies the inequality
|1E"— Epl| < (1 — wm)||E - Epl| . (23)

Let € = || — Eg||. We can decompose the contributions to ||EF — Epg|| in
P® — P¥) >0 and in P® — PF) <0 terms,

=l Bl = Y (PW PP+ Y (P -PY) . (29)

ke K+ keK—
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Then the normalization Y, P®*) =57, Pék) = 1 implies

=23 (PP -P®W) = 3 (PO -PP)+ 3 (PP - P®) =0

keK— ke K+ ke K+

and similar for e =23, 1 (P(k) — P](gk)) . Therefore,

S (PP -PP) = 3 (PP - PR) =2

ke K+ keK—

Using W Pgp = Pg, we have (back in original order to apply W)

¢=||E' - Fp|| =

y: y: W (k) (P(k) _pé’ﬂ) _ Z WO k) (P](Bk) —P(k))

l ke K+ keK—

(25)

(26)
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= S | Y wow (p<k> <k>) 3 W(z)(k)( pk) _ <k>)

leLT \keKT ke K—
+ S Y wom (Pg“) _ p(k)) - Y o (p(k) _ Pg“))
leL— \keK~— ke K+

Here LT is defined as the set of configurations [ which fulfills the inequality

R (p<k> _ pgw) > % Wb (p}g@ _ p<k>) |

ke K+ keK—

while L™ is the set of configurations [ with

3 W(l)(k)( p) _ <k>) 3 W(l)(k)( pk) _ <k>) .

ke K— ke K+

23



Normalization (16) and that the smallest matrix element is larger than zero (21)

imply
1 > Z W(l)(k) 2 Wmin
leL+

and the same equation with L™ replaced by L™. Inserting this into equation (26),
picking the extremes 1 and wp,;, appropriately, yields
|E" — Eg|| < (1 — wmin) €/2 + (1 — wnin) €/2 = (1 — wpin) € . (27)
Under repeated application of the matrix we obtain a state
Pt = W'P, with t=1,2,... (28)
and find for the approach to the equilibrium ensemble

|E" — Eg|| < exp(=At)||E —Eg||, A\=—In(1l — wpyin) > 0. (29)

Hence, the equilibrium ensemble is an attractive fixed-point.
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There are many ways to construct a Markov process satisfying (i), (ii) and (iii).
A stronger condition than balance (17) is

(iii’) Detailed balance:

WKk =BER ()0 —sEY (30)
Using the normalization Y, W) =1 detailed balance implies balance (iii).

At this point we have replaced the canonical ensemble average by a time average over
an artificial dynamics. Calculating then averages over large times, like one does in
real experiments, is equivalent to calculating ensemble averages. One distinguishes
dynamical universality classes. The Metropolis and heat bath algorithms discussed
in the following fall into the class of model A or Glauber dynamics, which imitates
the thermal fluctuations of nature to some extent. Cluster algorithms discussed
constitute another universality class. Some recent attention has focused on
dynamical universality classes of non-equilibrium systems.
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The Metropolis Algorithm

Detailed balance still does not uniquely fix the transition probabilities W (D)%),
The Metropolis algorithm can be used whenever one knows how to calculate the
energy of a configuration. Given a configuration k, the Metropolis algorithm
proposes a configuration [ with probability

f(I,k) normalized to Y f(l,k)=1. (31)
[

For f(I,k) we derive a symmetry condition which ensures detailed balance. The
new configuration [ is accepted with probability

pY 1 for E® < E®)
(k) . B _
’UJ( )( ) —_— min , @ — {6_6(E(Z)_E(k)) fOI' E(l) ~ E(k) (32)

If the new configuration is rejected, the old configuration has to be counted again.
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The Metropolis procedure gives rise to the transition probabilities

wOFE = (1 E)wD®) for | £k (33)
and WOE = £k k) + > £l k) (1 - w®®) . (34)
1k

Therefore, the ratio (W(O®) /W (FW) satisfies detailed balance (30) if
f(,k) = f(k,1) holds. (35)

Otherwise the probability density f(I, k) is unconstrained. So there is an amazing
flexibility in the choice of the transition probabilities W ()(%). One can even use
acceptance probabilities distinct from those of equation (32) and the proposal
probabilities are then not necessarily symmetric anymore (Hastings). Also, the
algorithm generalizes immediately to arbitrary weights.

The acceptance rate is defined as the ratio of accepted changes over proposed
moves (moves proposing the at hand configuration are not counted as accepted).
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Potts Model Heatbath Algorithm (Gibbs Sampler)

The heatbath algorithm chooses a state ¢; directly with the local Boltzmann
distribution defined by its nearest neighbors. The state ¢; can take on one of the
values 1,...,q and, with all other states set, determines a value of the energy
function. We denote this energy by E(q;) and the Boltzmann probabilities are

Pg(q;) = const e #E) (36)

where the constant is determined by the normalization condition

ZPB(%) = 1. (37)

qi=1

In equation (36) we can define F/(qg;) to be just the contribution of the interaction of
q; with its nearest neighbors to the total energy and absorb the other contribution
into the overall constant. The F(q;) values depend only on how the nearest
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neighbors of the spin g; partition into the values 1,...,q. For low values of ¢ and
the dimension d the most efficient implementation of the heatbath algorithm is to
tabulate all possibilities. However, here we prefer to give a generic code which
works for arbitrary values of ¢ and d.

For this we calculate the cumulative distribution function of the heat bath
probabilities

Qi
Pup(g:) = Y Psldq)) - (38)
q;=1
The normalization condition (37) implies Pgp(q) = 1. Comparison of these

cumulative probabilities with a uniform random number x" yields the heat bath
update g; — ¢;. Note that in the heat bath procedure the original value ¢;" does

not influence the selection of ¢;**".
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Start and Equilibration

Initially we have to start with a microstate which may be far off the Boltzmann
distribution. Far off means, that the Boltzmann probability (at temperature T')
for a typical state of the initially generated distribution can be very, very small.
Suppression factors like 10719990 are well possible. Although the weight of states
decreases with 1/n where n is the steps of the Markov process, one should exclude
the initial states from the equilibrium statistics. In practice this means we should
allow for a certain number of sweeps nequi to equilibrate the system.

Many ways to generate start configurations exist. Two natural and easy to
implement choices are:

1. Generate a random configuration corresponding to 5 = 0. This defines a random
or disordered start of a MC simulation.

2. Generate a configuration for which all Potts spins take on the same g¢-value.
This is called an ordered start of a MC simulation.
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Examples of initial time series:
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Figure 2: Left: Two Metropolis time series of 200 sweeps each for a 2d Ising model on a 80 x 80

lattice at B = 0.4 are shown.

Ordered and disordered starts are used. The exact mean value

eps = —1.10608 is also indicated (assignment a0302_01). Right: ¢ = 10 Potts model time series
of 200 sweeps on an 80 X 80 lattice at 8 = 0.62. Measurements of the action variable after every

sweep are plotted for ordered and disordered starts (assignment a03003_05).
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Computer Program

program potts_ts.f
subroutine potts_init.f

subroutine lat_init.f
subroutine potts_act_tab.f
subroutine potts_order.f
subroutine potts_ran.f
subroutine potts_act.f
subroutine potts_wght.f

subroutine potts_met.f
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Energy Checks

For the 2d Ising model we can test against the exact finite lattice results of
Ferdinand and Fisher. We simulate an 207 lattice at 3 = 0.4.

Now we use a statistics of 10 000 sweeps for reaching equilibrium and assume
that this is an overkill. A more careful analysis is the subject of the next lecture.

The statistics for measurement is chosen 32 times larger: 64 bins of 5000
sweeps each. The number 64 is taken, because according to the student
distribution the approximation to the Gaussian approximation is then already
excellent, while the binsize of 5000 (> 200) is argued to be large enough to
neglect correlations between the bins. With this statistics we find (assignment
20303_06)

€os = —1.1172 (14) (Metropolis) versus e; = —1.117834 (exact). (39)

Performing the Gaussian difference test gives a perfectly admissible value
@ = 0.66.
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Specific Heat

With E = (E) the specific heat is defined by

dF
C = — = p° ((E% —(E)?) .
-7 = 5 ((E°) = (B))

The last equal sign follows by working out the temperature derivative in the
definition of the mean energy and is known as fluctuation-dissipation theorem.
It is often used to estimate the specific heat from equilibrium simulations
without relying on numerical derivatives. An equivalent formulation is

c = @ <(E—E)2>

A\ 2
as is easily shown by expanding (E — E) and working out the expectation
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values. Defining

iactm?
act21lm =

mlink
we have a notation close to the computer code:

2 Nd2 n
C = ﬁ— (act21i — actlm2) :
R
or .
2 Nd2
C = prNd (actl; — actlm)?,
n
i=1

where the sums are over all measurements in the times series. When energy
histograms are available, this is calculated by equations in potts_mu2.f of
ForLib.

In the limit of an infinite statistics specific heat estimates from all these
equation agree. But with a finite statistics a number of problems emerge. In
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the binning approach, where nrpt of the production run defines the number of
blocks, one may want to use for E estimators E; which are constructed from
the histograms of the blocks. With N, the number of data in each bin and H;

the energy histogram of block i:

W X B Sy

Estimates of C; from either equation agree then and Gaussian error bars are
expected due to the binning. However, for a not so good statistics as bias
towards too small C; values is occurs, because E; and E, come from the same
block in the estimate

_ L B Xp(BP-E) Hy(E)
o B, -

b j€E€block(?)
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3 =2 _ [ > p(E— E;)* Hy(E)
— E —F) = .
N ij%c:k(i) = | 2 HilE)

The E; estimators are certainly inferior to the estimate E, which relies on the
entire statistics. Therefore, one may consider to use E instead of E;. However,
then one does not know anymore how to calculate the error bar of C as the
C; estimates would rely on overlapping data. The situation gets even worse
when we include reweighting, as this non-linear procedure implies that the two
estimators will in general differ. These difficulties are overcome by the jackknife
method.

When histograms are used the fast way to create jackknife bins is to sum
first the entire statistics:

H(E) =Y Hi(E).
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Subsequently jackknife histograms (superscript J) are defined by

and jackknife estimates C'

1

are obtained by using HY(E) instead of H;(FE).
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