
Message Passing Interface (MPI)

In a typical Unix installation a MPI Fortran 77 program will compile with

. . . pathname/mpif77 −O fln.f (1)

and generates an executable file, a.out, which runs with something like

. . . pathname/mpirun −nolocal −np n a.out (2)

or/a.out in some installations. Here the option -np defines the number n of
processes, n = 1 if the -np option is omitted. In our installation (2) reads

. . . pathname/mpirun −−hostfile hostfile.txt −nolocal −np n a.out
(3)

1

where the file hostfile.txt contain the names (addresses) of the participating
non-local processors. The number of processors (CPUs) can be smaller than the
number of processes. MPI will then run several, or even all, processes on one CPU.

As in our previous Fortran programs, we include the implicit declaration for our
real and logical (l) variables and use the Fortran default for the remaining integers.
This is now followed by the MPI preprocessor directive, which is brought into the
routines through

include ′mpif.h′ .

In a properly implemented MPI environment the compiler will find the file mpif.h
which contains definitions, macros and function prototypes necessary for compiling
the MPI program. The order of the statements matters, because mpif.h overwrites
some of our implicit declarations with explicit ones. All definitions which MPI makes
have names of the form

MPI ANY NAME .

Therefore, do not to introduce any own variables with names of the form
MPI In our code we use instead ANY NAME MPI. . ., when we like to emphasize a

2

relationship to MPI. Our usual include statements for parameter files and common
blocks follow include ′mpif.h′.

Before calling MPI communication routines, MPI needs to be initialized and it
is mandatory to call

MPI INIT(IERROR) .

MPI INIT must be called only once. The integer variable IERROR can be ignored
as long as everything proceeds smoothly. It returns MPI error codes, which can be
looked up in a MPI manual. Next, a process may call

MPI COMM RANK(COMM, RANK, IERROR)

to find out its rank. The rank is an integer, called MY ID (for my identity)
in our program. The first argument of MPI COMM RANK is a communicator. A
communicator is a collection of processes that can send messages to each other.
For basic programs the only communicator needed is the one used here

MPI COMM WORLD .

3

It is predefined in MPI and consists of all processes running when the program
execution begins. The second argument is the integer rank of the process, which
takes the values 0, . . . , n − 1 if there are n processes. In a program the integer
variable MY ID (which denotes the rank) can be used to branch the program by
assigning different random numbers and temperatures to the processes.

Some constructs depend on the total number of processes executing the program.
MPI provides the routine

MPI COMM SIZE(COMM, ISIZE, IERROR)

which returns the number of processes of the communicator COMM in its integer
argument ISIZE. In our programs we use the integer variable N PROC (number of
processes) to denote the size.

Two important MPI routines achieve point to point communication between

4

processes:

MPI SEND(BUF, ICOUNT, DATATYPE, IDEST, ITAG, COMM, IERROR)

and

MPI RECV(BUF, ICOUNT, DATATYPE, ISOURCE, ITAG, COMM, ISTATUS, IERROR) .

Differences in the arguments are DEST in MPI SEND versus SOURCE in MPI RECV
and the additional STATUS array in MPI RECV. All arguments are explained in the
following.

1. BUF: The initial address of the send or receive buffer.

2. ICOUNT: An integer variable which gives the number of entries to be send.

3. DATATYPE: The datatype of each entry. MPI datatypes which agree
with the corresponding Fortran datatypes are MPI INTEGER, MPI REAL,

5

MPI DOUBLE PRECISION, MPI COMPLEX, MPI LOGICAL and MPI CHARACTER.
Additional MPI data types (MPI BYTE and MPI PACKED) exist.

4. IDEST: The rank of the destination process.

5. ISOURCE: The rank of the source. Note that the sender and receiver can be
identical.

6. ITAG: The message tag, an integer in the range 0, . . . , 32767 (many MPI
implementations allow for even larger numbers than 32767), which has to be
identical for sender and receiver. The purpose of the tag is that the receiver can
figure out the message order when one process sends two or more messages (the
receive can be delayed due to other processing).

7. COMM: The communicator. Most often this is MPI COMM WORLD.

8. ISTATUS: The return status of MPI RECV. This array is properly dimensiones
by MPI STATUS SIZE. Strange errors can result if the corresponding dimension

6

statement is missing (consider to have �ISTATUS(MPI STATUS SIZE) in a
common block, which is propagated to all routines that need it). Besides that
ISTATUS can be more or less ignored. Consult the MPI manual, if peculiar
completions codes are encountered.

9. IERROR: The error code, an integer with which we deal in the same way as with
the return status.

The fields source, destination, tag and communicator are collectively called
the MPI message envelope. The receiver may specify the wildcard value
MPI ANY SOURCE for SOURCE, and/or the wildcard value MPI ANY TAG for TAG, to
indicate that any source and/or tag value is acceptable. However, there is then a
danger to loose control about what it transferred by whom to who.

MPI code should conclude with a call to

MPI FINALIZE(IERROR)

7

which tells its process that no further MPI instructions follow. This call is
mandatory for an error free termination of MPI.

More usefull instruction are listed in the following.

MPI BARRIER(COMM, IERROR)

which is normally called with the MPI COMM WORLD communicator. Execution
of the code proceeds only when all processes have reached the barrier, so that
synchronization is enforced at this point. In particular for debugging a code that
can be of value.

MPI ALLGATHER (SENDBUF, ISENDCOUNT, SENDTYPE, RECVBUF,

IRECVCOUNT, RECVTYPE, COMM, IERROR)

8

gathers on each process information from all processes, with the range defined
by a communicator. The arguments are: SENDBUF, the starting element of the
send buffer; ISENDCOUNT (integer), the number of elements in the send buffer;
SENDTYPE, the data type of the send buffer elements; RECVBUF, the first element
of the receive buffer; IRECVCOUNT (integer), the number of elements in the receive
buffer; RECVTYPE, the data type of the receive buffer; COMM, the communicator;
IERROR, the MPI error code.

Finally a usefull instruction, in particular for debugging purposes, is

MPI BCAST(BUF, ICOUNT, DATATYPE, ISOURCE, COMM, IERROR)

which broadcasts the buffer BUF from the process with rank ISOURCE to all
processes specified by the communicator COMM. The number of elements in the
buffer is given by ICOUNT, the datatype by DATATYPE, and IERROR is the MPI error
code.

9

