
Parallel Computing

After briefly discussing the often neglected, but in praxis frequently encountered,
issue of trivially parallel computing, we turn to parallel computing with information
exchange. Our illustration is the replica exchange method, also called parallel
tempering. Closely related (but less good) is the Jump-Walker (J-Walker) method.

Parallel tempering has a low, but non-trivial, communication overhead between
the processes. Information about the temperatures, energies and nearest neighbor
locations of n systems is communicated, and logical decisions have to be made.
This algorithm gives some kind of ideal start into the world of parallel processing
and is also of major practical importance. In some applications it competes with
the multicanonical algorithm, in others both algorithms supplement one another,
and combinations of them have been explored.

1



Trivially parallel computing

An example of a trivially parallel large scale endeavor is the Folding@Home
distributed computing project, which achieved sustained speeds of about thirty
teraflops in molecular dynamics simulations.

There are many tasks, which simply can be done in parallel, for instance
canonical MC simulations at different temperatures and/or distinct lattices. For
such applications the gain due to having many (identical) processors available scales
linearly with the number of processors. In practice trivially parallel applications
are frequently encountered. Another example are simulations of spin glass replica.
It is far more cost efficient to run trivially parallel applications on PC clusters
than on dedicated parallel machines (supercomputers), which feature expensive
communication networks.

For MCMC simulations of single systems, which last (very) long in real time,
parallelization is trivial, but there is some overhead due to multiple equilibration

2



runs. Typically the CPU time consumption of such a simulation is divided into

ttot = teq + tmeas .

For parallelization of such a computation on n independent nodes the single
processor CPU time scales as

t1tot = teq + tmeas/n .

How many processors should one choose (assuming a sufficiently large supply)? A
good rule of thumb is

n = nint

[
tmeas

teq

]
.

The total processor time used becomes tntot = n teq + tmeas ≈ 2 tmeas, which limits
the CPU time loss due to multiple equilibrations to less than two

Rloss =
tntot

ttot
≈ 2 tmeas

teq + tmeas
< 2 ,

3



and the gain is a reduction of the run time by the factor

R−1
gain =

t1tot

ttot
≈ 2 teq

teq + n teq
=

2
1 + n

.

The worst case is n = 2, for which the improvement factor in CPU time is 2/3.
Obviously this parallelization makes most sense for tmeas � teq.

4



Replica exchange method (parallel tempering)

The method of multiple Markov chains was introduced by Geyer and,
independently, by Hukusima and Nemoto under the name replica exchange
method. The latter work was influenced by the simulated tempering, which
coined the name parallel tempering for an exchange of temperatures in multiple
Markov chains. But not that simulated tempering is distinct method and actually
a special case of the method of expanded ensembles. A precursor of such ideas is
a 1986 PRL by Swendsen and Wang, where a general replica exchange method is
formulated (apparently its generality prevented one from identifying the important
special case).

In practice one does not exchange configuration but temperatures or similar
parameters, so that the amount of exchanged information is small. Therefore,
the method is particularly well suited for parallel processing on clusters of
workstations, which lack the expensive fast communication hardware of the

5



dedicated parallel computers. The Jump Walker (J-Walker) approach does not
exchange configurations, but feeds replica from a higher temperature into a
simulation at a lower temperature, and has consequently problems with balance.

Parallel tempering performs n canonical MC simulations at different β-values
with Boltzmann weight factors

wB,i(E(k)) = e−βiE
(k)

= e−H , i = 0, . . . , n− 1 ,

where β0 < β1 < ... < βn−2 < βn−1, and allows to exchange neighboring β-values:

βi−1 ←→ βi for i = 1, . . . , n− 1 .

Their joint weight is
e−βi−1Ei−1−βiEi = e−H

and the βi−1 ↔ βi exchange leads to

6



−4H =
(
−βi−1E

(k)
i − βiE

(k′)
i−1

)
−
(
−βiE

(k)
i − βi−1E

(k′)
i−1

)
= (βi − βi−1)

(
E

(k)
i − E

(k′)
i−1

)
which is accepted or rejected according to the Metropolis algorithm, i.e., with
probability one for 4H ≤ 0 and with probability exp(−4H) for 4H > 0.

The CPU time spent on the β exchange should be less than 50% of the total
updating time. In practice it is normally much less (a few percent). The βi spacing
should to be determined so that a reasonably large acceptance rate is obtained for
each pair. This can be done by a recursion, which is a slight modification of one
by Kerler and Rehberg.

Let us denote by apt
i the acceptance rate of the βi−1 ↔ βi exchange.

Assume apt
i > 0 for all i = 1, . . . , n− 1. Iteration m is performed with the β values

7



βm
i , i = 0, . . . , n− 1. We define the βm+1

i values of the next iteration by

βm+1
0 = βm

0 and βm+1
i = βm+1

i−1 + am
i (βm

i − βm
i−1) for i = 1, . . . , n− 1 ,

where

am
i = λm apt,m

i with λm =
βm

n−1 − βm
0∑n−1

i=1 apt,m
i (βm

i − βm
i−1)

.

For large acceptance rates apt
i the distance βm

i − βm
i−1 is increased, whereas it

shrinks for small acceptance rates. The definition of the ai coefficients guarantees
βm+1

n−1 = βm
n−1, i.e. the initial βn−1 − β0 distance is kept.

A problem of the recursion is still that the statistical noise stays similar in each
iteration step. It may be preferable to combine all the obtained estimates with
suitable weight factors wk. The final estimate after m iterations reads then

βi =
∑m

k=1 wkβk
i∑m

k=1 wk
.

8



Two reasonable choices for the weights are

wk = min
i
{apt,k

i } ,

which determines the weight from the worst exchange acceptance rate and
suppresses the statistics of runs with a low wk, and

wk =
1√
σ2

with σ2 =
n∑

i=1

(
1

apt,k
i

)2

,

which relies on what would be the correct statistical weighting of the acceptance
rates, if they were statistically independent (what they are not).

9



Computer implementation

We like to program the β exchange using MPI. Initially the indices of the β
values are chosen to agree with the rank MY ID of the process. The exchanges lead
then to the situation for which the β indices become an arbitrary permutation of
the numbers 0, . . . , n− 1. Two approaches are possible:

1. All the n processes send the needed information (the energies of their
configurations) to a master processor. The master handles the exchange and
sends each process its new β value back (which can agree with the old value).

2. The involved processes handle the exchanges through point to point
communication.

We consider only the second approach, because for it the number of sweeps per
time unit has a chance to scale linearly with the number of processors, whereas for

10



the first approach the master processor will become the bottleneck of the simulation
when many processors are employed (when only few processors are used, it may be
more efficient to let a master processor handle the exchanges).

Each process has to know the identities of the processes where the neighboring β
values reside. They are stored in a neighbor array NEIGH(2). The initial values are
those defined in the phbwrite mpi.f test program of 1MPI. With each β exchange
the nearest neighbor and next nearest neighbor connections get modified and a
correct bookkeeping is the main difficulty of implementing the parallel tempering
algorithm. We cannot deal with all pairs simultaneously, but need one buffer
process between each pair. This leads to three distinct interaction groups, starting
either with β0, β1 or β2, which we label by INDEX = 0, 1, 2 as indicated for eight
processes in the following figure (e.g., for INDEX = 0 the buffer processes are i = 2
and i = 5):

11



0

1

2

0 1 2 3 4 5 6 7

IN
D

E
X

i of βi

Our MPI Fortran subroutine p pt mpi.f implements the β exchange (as in the
figure the variable INDEX takes on the values 0, 1 or 2).

After the lowest β value is determined, the higher β values follow according to

12



the scheme of the figure. The thus identified processes send their iact, IACPT PT
(for apt

i ) and NEIGH(1) values to their NEIGH(2) neighbors, i.e. to the processes
which accommodate their upper, neighboring β values. These neighbor processes
decide whether the β exchange is accepted or rejected, relying on the logical-valued
function

LPT EX IA(BETA1, BETA2, IACT1, IACT2) ,

which implements the Metropolis criterion. For either outcome the processes send
two integers back to their lower neighbors (the originally initiating processes) and
one integer to their upper neighbors. If the exchange is rejected, the first element
of each MPI SEND is set to −2, thus signaling to the receiver that nothing changed.
If accepted, the receivers store the addresses of their new neighbors in the NEIGH
array. In addition, two more actions are performed: First, the initiating processes
inform their left neighbors about the change by sending a new neighbor address
to NDEST3R. This send is performed in any case, where the message −2 informs
NDEST3R that nothing changed. Second, the processes whose β values changed
re-calculate their heatbath weights and interchange also their parallel tempering
acceptance rates IACPT PT.

13



After a certain number of β exchanges, the β values are updated by either of
the subroutines

pt rec0 mpi.f, pt rec1 mpi.f or pt rec2 mpi.f .

In practice it may be unavoidable that one (or several) of the acceptance rates apt
i

are zero. Applying the Kerler-Rehberg recursion blindly gives the undesirable result
β′

i−1 = βi. To avoid this, we

replace all apt
i = 0 values by apt

min = 0.5/Nupdate

where Nupdate is the number of updates done. This works when there are enough
βi values to bridge the [β1, βn−1] interval. Otherwise, the only solution to the
problem of apt

i = 0 values is to increase the number of processes.

We could gather the needed permutation of β values, as well as their
corresponding exchange acceptance rates, using point to point MPI communication.

14



However, it is shorter to rely on the

MPI ALLGATHER (SENDBUF, ISENDCOUNT, SENDTYPE, RECVBUF,

IRECVCOUNT, RECVTYPE, COMM, IERROR)

instruction. The arguments of MPI ALLGATHER are: SENDBUF, the starting element
of the send buffer; ISENDCOUNT (integer), the number of elements in the send
buffer; SENDTYPE, the data type of the send buffer elements; RECVBUF, the first
element of the receive buffer; IRECVCOUNT (integer), the number of elements
in the receive buffer; RECVTYPE, the data type of the receive buffer; COMM, the
communicator; IERROR, the MPI error code.

When a very large number of processes is involved, one may want to reprogram
this in form of point to point interactions.

15



Finally a usefull instruction, in particular for debugging purposes, is

MPI BCAST(BUF, ICOUNT, DATATYPE, ISOURCE, COMM, IERROR)

which broadcasts the buffer BUF from the process with rank ISOURCE to all
processes specified by the communicator COMM. The number of elements in the
buffer is given by ICOUNT, the datatype by DATATYPE, and IERROR is the MPI
error code.

16


