Motion in One Dimension

The study of motion is called kinematics. Displacement of a point particle:

$$
\triangle x=x_{2}-x_{1}
$$

where x_{1} is the position at time t_{1} and x_{2} is the position at time $t_{2}, t_{2}>t_{1}$. The average velocity, Tipler figure 2-4, is defined by:

$$
v_{\mathrm{av}}=\frac{\triangle x}{\triangle t}=\frac{x_{2}-x_{1}}{t_{2}-t_{1}}
$$

The average velocity can take positive or negative values. The average speed is defined by:

$$
\text { Average speed }=\frac{\text { total distance }}{\text { total time }}=\frac{\triangle s}{\triangle t} \geq 0
$$

Instantaneous velocity, Tipler figure 2-5:

$$
v(t)=\lim _{\Delta t \rightarrow 0} \frac{\Delta x}{\Delta t}=\lim _{t_{2} \rightarrow t} \frac{x-x_{2}}{t-t_{2}}=\frac{d x}{d t}
$$

This is the slope of the tangent of the curve $x(t)$ at t and called derivative. Note: $t=t_{1}, x=x_{1}$ of the difference notation. The instantaneous speed is the absolute value $|v(t)|$ of the instantaneous velocity.

Relative velocity: If a particle p moves with velocity v_{pA} relative to a coordinate system A, which moves with velocity v_{AB} relative to a coordinate system B, the velocity of p with respect to B is

$$
v_{\mathrm{pB}}=v_{\mathrm{pA}}+v_{\mathrm{AB}}
$$

This equation is only valid for velocities $|v| \ll c$, where c is the speed of light.

Acceleration: Acceleration is the rate of change of the instantaneous velocity. The average acceleration is defined by:

$$
a_{\mathrm{av}}=\frac{\triangle v}{\triangle t}=\frac{v_{2}-v_{1}}{t_{2}-t_{1}}
$$

The instantaneous acceleration is:

$$
a(t)=\lim _{\Delta t \rightarrow 0} \frac{\Delta v}{\Delta t}=\lim _{t_{2} \rightarrow t} \frac{v-v_{2}}{t-t_{2}}=\frac{d v}{d t}=\frac{d^{2} x}{d t^{2}}
$$

Motion With Constant Acceleration

$$
\frac{d v}{d t}=a=a_{\mathrm{av}}
$$

Integration:

$$
v(t)=\frac{d x}{d t}=v_{0}+a t
$$

Here v_{0} is the velocity at time zero, called initial condition.
Second integration:

$$
x(t)=x_{0}+v_{0} t+\frac{1}{2} a t^{2}
$$

Here x_{0} is the second initial condition, the position at time zero.
Illustrations: (a) Air track; (b) constant acceleration of free fall.
Note,

$$
\begin{gathered}
\triangle x=x-x_{0}=v_{\mathrm{av}} t=\frac{1}{2}\left(v+v_{0}\right) t=\frac{1}{2}\left(v+v_{0}\right) \frac{v-v_{0}}{a}=\frac{v^{2}-v_{0}^{2}}{2 a} \\
v^{2}=v_{0}^{2}+2 a \triangle x
\end{gathered}
$$

General integration: Tipler figure 2-18.

Questions (PRS)

Units: The meter is nowadays defined by

1. Scratches on a platinium-iridium alloy kept at the International Bureau of Weights and Measures in Sèvres, France.
2. As a fraction of the circumference of the earth around the equator.
3. As a distance traveled by the speed of light in vacuum during a certain time.

Significant figures: The experimental measurements 2.50 m and 2.496 m

1. Disagree.
2. Are identical.
3. Agree within measurement errors.

Order of magnitude: The number 250 has the order of magnitude

1. 10
2. 10^{2}
3. 10^{3}
4. 2.5×10^{2}

Relative velocity: A swimmer moves a river upstream with the velocity of $1.20 \mathrm{~km} / \mathrm{h}$ relative to the water. The speed of the water is $0.1 \mathrm{~m} / \mathrm{s}$ relative to the ground. The velocity of the swimmer over ground (positive upstream) is

1. $0 \mathrm{~km} / \mathrm{h}$
2. $+3000 \mathrm{~m} / \mathrm{s}$
3. $+0.84 \mathrm{~km} / \mathrm{h}$
4. $-0.84 \mathrm{~km} / \mathrm{h}$
5. $-3000 \mathrm{~m} / \mathrm{s}$

Acceleration: Assume the acceleration of a point particle is $a=0$. The following holds:

1. $v(t)=v_{0}$
2. $v(t)=v_{0}+t$
3. $v(t)=v_{0} t$
4. $x(t)=x_{0}$
5. $x(t)=x_{0}+v_{0} t$
6. $x(t)=x_{0}+\frac{1}{2} v_{0} t$
