Circular Motion

$$
a_{r}=\frac{v^{2}}{r}
$$

The Period T

The time T required for one complete revolution is called the period. For constant speed

$$
v=\frac{2 \pi r}{T} \text { holds }
$$

Example: Circular Pendulum: Figures 5-22 and 5-23 of Tipler-Mosca. Relation between angle and velocity.

$$
\begin{gathered}
\vec{T}+\vec{F}_{c f}+m \vec{g}=0 \\
\vec{T}=T_{r} \hat{r}+T_{y} \hat{y} \\
T_{r}=-T \sin (\theta)=-m \frac{v^{2}}{r} \\
T_{y}=T \cos (\theta)=m g \\
\frac{\sin (\theta)}{\cos (\theta)}=\frac{v^{2}}{g r} \\
\tan (\theta)=\frac{v^{2}}{g r} \\
v=\sqrt{g r \tan (\theta)}
\end{gathered}
$$

Example: Forces on a car in a banked curve:
Figures 5-26 of Tipler-Mosca. The optimal angle θ is the one for which the centrifugal force is balanced by the inward component of the normal force (i.e. without friction). Then:

$$
\begin{gathered}
F_{n} \cos (\theta)-m g=0 \\
F_{n} \sin (\theta)-m \frac{v^{2}}{r}=0 \\
\tan (\theta)=\frac{v^{2}}{g r}
\end{gathered}
$$

Angular Velocity

Definition:

$$
\omega=\frac{d \theta}{d t}
$$

For ω constant and in radian we find:

$$
v=r \omega
$$

Namely, for one period:

$$
\omega T=2 \pi \Rightarrow v T=2 \pi r
$$

Surface of Rotating Water

$$
\frac{d y(r)}{d r}=\tan (\theta)=\frac{v^{2}}{g r}=\frac{\omega^{2} r^{2}}{g r}=\frac{\omega^{2} r}{g}
$$

Integration:

$$
y(r)=\frac{\omega r^{2}}{2 g}+y(0)
$$

parabola.

For the mathematically ambitious only:

Another Derivation of the Acceleration

Now,

$$
\begin{aligned}
\vec{r}(t)=r \hat{r} \quad \text { with } \hat{r} & =\cos (\theta) \hat{y}+\sin (\theta) \hat{x} \\
\theta(t) & =\omega t
\end{aligned}
$$

Therefore,

$$
\hat{r}=\cos (\omega t) \hat{y}+\sin (\omega t) \hat{x}
$$

The velocity is

$$
\begin{aligned}
\vec{v}=\frac{d \vec{r}}{d t} & =r \frac{d \hat{r}}{d t}=-r \omega \sin (\omega t) \hat{y}+r \omega \cos (\omega t) \hat{x} \\
& =-v \sin (\omega t) \hat{y}+v \cos (\omega t) \hat{x}=v \hat{t}
\end{aligned}
$$

where

$$
\hat{t}=-\sin (\omega t) \hat{y}+\cos (\omega t) \hat{x}
$$

is the tangential unit vector. In the same way the acceleration follows:

$$
\begin{gathered}
\vec{a}=\frac{d \vec{v}}{d t}=v \frac{d \hat{t}}{d t}=-v \omega \cos (\omega t) \hat{y}-v \omega \sin (\omega t) \hat{x} \\
=-\frac{v^{2}}{r} \cos (\omega t) \hat{y}-\frac{v^{2}}{r} \sin (\omega t) \hat{x}=-\frac{v^{2}}{r} \hat{r} \\
\vec{a}=a_{r} \hat{r} \text { with } a_{r}=-\frac{v^{2}}{r}
\end{gathered}
$$

Questions on Circular motion

A particle of mass m moves with constant speed v on a circle of radius R. The following holds (pick one):

1. The centripetal force is v^{2} / R towards the center.
2. The centripetal force is $m v^{2} / R$ towards the center.
3. The centripetal force is $m v^{2} / R$ away from the center.
4. The centripetal force is v^{2} / R away from the center.
5. The centripetal force is $m v^{2} / R$ downward.
6. The acceleration of the particle is a constant vector.
7. The acceleration of the particle is a vector of constant magnitude.
8. The magnitude of the acceleration of the particle varies with time.
9. The acceleration of the particle is a vector, which points up.
10. The acceleration of the particle is a vector, which points down.
11. The acceleration of the particle is a vector, which points towards the center of the circle.

Drag Forces

When an object moves through a gas like air or a fluid like water, it will be subject to a drag force or retarding force that reduces its speed.

For an object which falls in air under the influence of gravity one observes an acceleration like

$$
m g-b v^{n}=m a
$$

Where b is a constant and n is approximately one a low speed and two at high speeds.

The terminal speed $v_{\text {term }}$ is reached for $a=0$:

$$
b v_{t e r m}^{n}=m g \Rightarrow v_{\text {term }}=\left(\frac{m g}{b}\right)^{1 / n}
$$

For $n=2$:

$$
v_{t e r m}=\sqrt{\frac{m g}{b}}
$$

Obviously, the terminal speed for a free fall in air is highly material dependent: E.g. a feather versus an iron ball, a man with our without a parachute.

Questions

$$
v_{t e r m}=\left(\frac{m g}{b}\right)^{1 / n}
$$

Determine b for an 80 kg object, $n=2$ and $v_{\text {term }}=200 \mathrm{~km} / \mathrm{h}$. The result is (pick one):

1. $b=0.254 \mathrm{~kg} / \mathrm{m}$
2. $b=0.254 \mathrm{~kg} / \mathrm{s}$
3. $b=0.021 \mathrm{~kg} / \mathrm{s}$
4. $b=0.021 \mathrm{~kg} / \mathrm{m}$

Determine b for an 80 kg object, $n=1$ and $v_{\text {term }}=20 \mathrm{~km} / \mathrm{h}$. The result is (pick one):

1. $b=141 \mathrm{~kg} / \mathrm{m}$
2. $b=141 \mathrm{~kg} / \mathrm{s}$
3. $b=39.2 \mathrm{~kg} / \mathrm{s}$
4. $b=39.2 \mathrm{~kg} / \mathrm{m}$
