
Work and Energy

Motion With Constant Force: The work W done by a constant Force ~F whose
point of application moves through a distance 4~x is defined to be

W = F cos(θ)4x

where θ is the angle between the vector ~F and the vector 4~x, see figure 6-1 of
Tipler-Mosca. If 4~x is along the x-axis, i.e.

4~x = 4x î = 4x x̂

then
W = Fx4x

holds. Work is a scalar quantity that is positive if 4x and Fx have the same sign
and negative otherwise.
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The SI unit of work and energy is the joule (J)

1 J = 1N ·m = 1 kg m2 / s2

Another energy unit frequently used in physics is the electron volt (eV):

1 eV = 1.602 176 462 (63)× 10−19 J

is the actual value from the National Institute of Standards and Technology (NIST),
surfe physics.nist.gov. Often used multiples:

meV, keV, MeV and GeV .
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Which of the following choices corresponds, respectively, to

meV, keV, MeV and GeV ?

1. 103 eV, 104 eV, 106 eV, 109 eV .

2. 10−3 eV, 102 eV, 103 eV, 106 eV .

3. 10−3 eV, 103 eV, 106 eV, 109 eV .

4. 10−6 eV, 103 eV, 106 eV, 109 eV .

5. 10−3 eV, 102 eV, 103 eV, 109 eV .

6. 10−3 eV, 102 eV, 103 eV, 106 eV .

Answer: See table 1-1 of Tipler-Mosca!
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Power

The power P supplied by a force is the rate at which the force does work.

P =
dW

dt

The SI unit of power is called watt (W):

1 W = 1J/s

1 kW · h = (103 W ) (3600 s) = 3.6× 106 W · s = 3.6 MJ

1 hp = 505 ft · lb/s = 746W = 0.746 kW
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Work and Kinetic Energy

There is and important theorem, which relates the total work done on a particle
to its initial and final speeds. If Fx is the net force acting on a particle, Newton’s
second law gives

Fx = m ax

and we recall the constant-acceleration formula (Tipler-Mosca eqn.2-17, p.28)
between initial and final speeds:

v2
f − v2

i = 2 ax4x .
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Now, the total work becomes

Wtot = m ax4x =
1
2

m v2
f −

1
2

m v2
i

where we substituted ax4x = (v2
f − v2

i )/2. The kinetic energy of the particle is
defined by:

K =
1
2

m v2

The work-kinetic energy theorem states: The total work done on the particle is
equal to the change in kinetic energy

Wtot = Kf −Ki
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Work Done by a Variable Force

Tipler-Mosca figures 6-7 and 6-8:

W = lim
4xi→0

∑
i

Fx4xi =
∫ x2

x1

Fx dx

= area under the Fx versus x curve.

Example: Work needed to expand a spring from rest.

When we choose x0 = 0 for the rest postion of the spring

Fx = k (x− x0) = k x

Hence,

W =
∫ x

0

Fx dx′ =
∫ x

0

k x′ dx′ =
1
2

k x2
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Work and Energy in 3D

Figure 6-12 of Tipler-Mosca: For a small displacement

4W = ~F · 4~s = F cos(φ)4s = Fs4s .

Here ~F · 4~s is called the dot product or scalar product of the two vectors. For two
general vectors ~A and ~B it is defined by

~A · ~B = A B cos(φ)

where φ is the angle between ~A and ~B, see figure 6-13 of Tipler-Mosca.

Properties of Dot Products: Table 6-1 of Tipler-Mosca.

Commutative rule: ~A · ~B = ~B · ~A

Distributive rule: ( ~A + ~B) · ~C = ~A · ~C + ~B · ~C
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Further, the following holds (pick one):

1. ~A and ~B are perpendicular: ~A · ~B = A B

2. ~A and ~B are perpendicular: ~A · ~B = 1

3. ~A and ~B are perpendicular: ~A · ~B = 0

1. ~A and ~B are parallel: ~A · ~B = A B

2. ~A and ~B are parallel: ~A · ~B = 1

3. ~A and ~B are parallel: ~A · ~B = 0
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1. ~A · ~A = A2

2. ~A · ~A = 1

3. ~A · ~A = 0

10



The General Definition of Work:

W =
∫ s2

s1

~F · d~s =
∫ s2

s1

Fs ds .

3D Work−Kinetic Energy Theorem:

W = m

∫ s2

s1

as ds = m

∫ s2

s1

dv

dt
ds = m

∫ s2

s1

dv

ds

ds

dt
ds

= m

∫ s2

s1

v
dv

ds
ds = m

∫ v2

v1

v dv =
1
2

m v2
2 −

1
2

m v2
1
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Example (1): Skier skiing down a hill of constant slope.

Figure 6-18 of Tipler-Mosca:

W = m~g · ~s = m g s cos(φ), φ = 90o − θ

W = m g s sin(θ) = m g s
h

s
= m g h

Final speed v:

W = m g h =
1
2

m v2 − 1
2

m v2
0

where v0 is the initial speed. For v0 = 0 (initially at rest) we get for the final speed:

v =
√

2 g h .
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Example (2): Skier skiing down a hill of arbitrary slope.

Figure 6-18 of Tipler-Mosca:

dW = m~g · d~s = m g ds cos(φ) = m g dh

W =
∫ s

0

m~g · d~s = m g

∫ h

0

dh′ = m g h

independently of the slope of the hill!
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Potential Energy

Often work done by external forces on a system does not increase the kinetic
energy of the system, but is instead stored as potential energy.

Examples (figures 6-20 and 6-21 of Tipler-Mosca):

1. Energy stored by lifting a weight.

2. Energy stored by a spring.

Conservative Forces:

A force is called conservative when its total work done on a particle along a
closed path is zero (figure 6-22 of Tipler-Mosca).
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Potential-Energy Function:

For conservative forces a potential energy function U can be defined, because
the work done between two positions 1 and 2 does not depend on the path:

4U = U2 − U1 = −
∫ s2

s1

~F · d~s

dU = −~F · d~s for infinitesimal displacements.
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Example: Gravitational potential energy near the earth’s surface.

dU = −~F · d~s = −(−m g ĵ) · (dx î + dy ĵ + dz k̂) = m g dy

U =
∫

dU = m g

∫ y

y0

dy′ = m g y −m g y0

U = U0 + m g y with U0 = m g y0 .

Example: Potential energy of a spring with x0 = 0.

dU = −~F · d~s = −Fx dx = −(−k x) dx = k dx

U =
∫

k x dx = U0 +
1
2

k x2

We may choose U0 = 0, such that U becomes

U =
∫ x

0

k x dx =
1
2

k x2 .
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Non-conservative Forces

Not all forces are conservative. Friction is an example of a non-conservative
force. It eats up the energy which is converted, as we learn later, into heat.
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