
Collisions

In a collision two objects interact strongly for a very short time, so that external
forces can be neglected. When the total kinetic energy of the two objects is the
same after the collision as before, the collision is called elastic. Otherwise, it is
called inelastic. In the perfectly inelastic collistion all the energy relative to the
center of mass is converted to thermal or internal energy of the system and the two
objects stick together.
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Collisions in 1D

Momentum conservation:

p1f + p2f = m1 v1f + m2 v2f = m1 v1i + m2 v2i = p1i + p2i

Perfectly Inelastic Collisions:

v1f = v2f = vcm with vcm =
m1 v1i + m2 v2i

m1 + m2

Demonstration: Airtrack.
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Example: Figure 8-30 of Tipler-Mosca.

A bullet is fired into a hanging target, which is at rest. The target, with the
bullet embedded, swings upward. Find the speed of the bullet from the height
reached.

Solution: Energy conservation gives

1
2

(m1 + m2) v2
f = (m1 + m2) g h ⇒ vf =

√
2 g h

Let m1 be the mass of the bullet and m2 be the mass of the target. Now,

vf = vcm =
m1 vi + m2 0

m1 + m2

and

vi =
(m1 + m2)

√
2 g h

m1

is the initial speed of the bullet.
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Elastic Collisions:

The final kinetic energies are equal:

1
2

m1 v2
1f +

1
2

m2 v2
2f =

1
2

m1 v2
1i +

1
2

m2 v2
2i

Rearranging this equation gives

m2 (v2
2f − v2

2i) = m1 (v2
1i − v2

1f)

m2 (v2f − v2i) (v2f + v2i) = m1 (v1i − v1f) (v1i + v1f)
Momentum conservation may be re-written as

m2 (v2f − v2i) = m1 (v1i − v1f)

Hence,
v2f + v2i = v1i + v1f
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v2f − v1f = −(v2i − v1i)

The right-hand-side of this equation is called speed of approach and the left-hand-
side speed of recession.
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Example 1: Find v1f and v2f for an elastic collission with

m1 = m2 = m, v1i > 0 and v2i = 0 .

Momentum conservation gives

v1f + v2f = v1i

and the elastic equation becomes

v2f − v1f = v1i

Adding both equations, we find

2 v2f = 2 v1i i.e. v2f = v1i .
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Example 2: Find v1f and v2f for an elastic collission with

m2 = 2m1, m1 = m, v1i > 0 and v2i = 0 .

Momentum conservation gives

v1f + 2 v2f = v1i

while he elastic equation stays the same

v2f − v1f = v1i

Adding both equations, we find

3 v2f = 2 v1i i.e. v2f =
2
3

v1i ⇒ v1f = v1i −
4
3

v1i = −1
3

v1i .
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Kinetic Energy of a System

Although the total momentum of a system is conserved when the net external force
is zero, the total mechanical energy changes, because the internal forces may be
non-conservative. This is, for instance, the case in our example of the astronaut.
Her muscles use chemical energy to push the pannel away. Before the push the
kinetic energy of the system was zero, after the push it is

Kafter = ma
v2

a

2
+ mp

v2
p

2
.

However, it is possible to decompose the kinetic energy of a system into a CM
energy, which does not change when the net external force is zero, and kinetic
energies relative to the CM, which may change due to internal forces.

8



The kinetic energy of a system of particles is

K =
n∑

i=1

Ki =
n∑

i=1

1
2

mi v
2
i =

n∑
i=1

1
2

mi (~vi · ~vi)

The velocity of each particle can be written as the sum of the velocity of the CM,
~vcm, and the velocity of the particle relative to the CM reference frame:

~ui = ~vi − ~vcm with ~vcm =
∑n

i=1 mi ~vi∑n
i=1 mi

see figure 8-40 of Tipler-Mosca for i = 1, 2. Then

~vi = ~vcm + ~ui

and
n∑

i=1

1
2

mi (~vi · ~vi) =
n∑

i=1

1
2

mi (~vcm + ~ui) · (~vcm + ~ui)
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=
n∑

i=1

1
2

mi v
2
cm +

n∑
i=1

1
2

mi u
2
i + ~vcm ·

n∑
i=1

mi ~ui

Now
n∑

i=1

mi ~ui = M ~ucm = 0

because the CM velocity is zero relative to the CM.

Therefore, the kinetic energy of a system of particles is

K =
1
2

M v2
cm + Krel where Krel =

n∑
i=1

1
2

mi u
2
i .

M is the total mass and Krel is the kinetic energy of the particles relative to the
CM.
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Impulse and Average Force (Figure 8-24 of Tipler-Mosca)

The impulse of the force ~F on one of the particles is defined as

~I =
∫ tf

ti

~F dt

where the integration is over the time interval 4t = tf − ti of the collision. The
magnitude of the impulse is the area under the F -versus-t curve. The impulse
equals the total change in momentum during the time interval

~I =
∫ tf

ti

d~p

dt
dt = ~pf − ~pi = 4~p .

The average force for the time interval is

~Fav =
1
4t

∫ tf

ti

~F dt =
~I

4t
.
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Example: Figure 8-26 of Tipler-Mosca.

A car with an 80 kg crash test dummy drives into a wall at 25 m/s (about 56 mi/h).
Estimate the force on the seat belt.

Steps:

1. The dummy’s initial momentum is m v = 2000 kg ·m/s.

2. The impulse is the change of the momentum I = 2000 N · s.

3. Estimate the collision time. With 4x = 1m and vav = 12.5 m/s one gets
4t = 0.08 s.

4. Compute the average force:

Fav =
I

4t
= 25 kN .
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Rocket Propulsion (mathematically ambitious)

We consider the simple model of a rocket where the fuel is burned at a constant
rate

R =
dm

dt
= constant

and the speed of the exhaust gas relative to the rocket is another constant: uex > 0.
The mass of the rocket at time t becomes

m = m(t) = m0 −R t

where m0 is the rocket mass at the initial time t = 0. The momentum of the
rocket at time t is

P = m v .

We assume that the rocket moves against a constant gravitational acceleration. In
the instantaneous rest frame of the rocket momentum conservation reads

dP = −m g dt = m dv − uex dm = m dv − uex R dt .
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Note, dP = 0 if there is no external force, i.e. g = 0. We re-write the momentum
conservation equation as

−(m0 −R t) g dt = (m0 −R t) dv − uex R dt .

Dividing both sides by (m0 −R t) gives

−g dt = dv − uex R

m0 −R t
dt .

Such an equation is solved by the method of separation of variables. This simply
means that the term with v is brought to one side of the equation and all terms
with t to the other:

dv = −g dt +
uex R

m0 −R t
dt .

Now, both sides can be integrated:∫ v

0

dv′ = −g

∫ t

0

dt′ + uex R

∫ t

0

1
m0 −R t′

dt′
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and the integration is elementary

v = v(t) = −g t + uex R

[
− ln(m0 −R t′)

R

]t

0

=

−g t− uex [ln(m0 −R t)− ln(m0)] = −g t− uex ln
[

m

m0

]
which is equation (8-43) of Tipler-Mosca (we used m = m0 − R t and the

addition/subtraction rule for the logarithmic function in the last step).
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