
Oscillations (Chapter 14)

Oscillations occur when a system is disturbed from stable equilibrium. Examples:
Water waves, clock pendulum, string on musical instruments, sound waves, electric
currents, ...

Simple Harmonic Motion

Example: Hooke’s law for a spring.

Fx = m a = −k x = m
d2x

dt2

a =
d2x

dt2
= − k

m
x

The acceleration is proportional to the displacement and is oppositely directed.
This defines harmonic motion.
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The time it takes to make a complete oscillation is called the period T . The
reciprocal of the period is the frequency

f =
1
T

The unit of frequency is the inverse second s−1, which is called a hertz Hz.

Solution of the differential equation:

x = x(t) = A cos(ω t + δ) = A sin(ω t + δ − π/2)

A, ω and δ are constants: A is the amplitude, ω the angular frequencey, and δ the
phase.

v = v(t) =
dx

dt
= −ω A sin(ω t + δ)

a = a(t) =
dv

dt
=

d2x

dt2
= −ω2 A cos(ω t + δ) = −ω2 x
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Therefore, for the spring

ω =

√
k

m
.

Initial conditions: The amplitude A and the phase δ are determined by the initial
position x0 and initial velocity v0:

x0 = A cos(δ) and v0 = −ω A sin(δ) .

In particular, for the initial position x0 = xmax = A, the maximum displacement,
we have δ = 0 ⇒ v0 = 0.
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The period T is the time after which x repeats:

x(t) = x(t + T ) ⇒ cos(ω t + δ) = cos(ω t + ω T + δ)

Therefore,

ω T = 2π ⇒ ω =
2π

T
= 2π f

is the relationship between the frequency and the angular frequency. For Hooke’s
law:

f =
1
T

=
1
2π

√
k

m
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Simple Harmonic and Circular Motion

Imagine a particle moving with constant speed v in a circle of radius R = A. Its
angular displacement is

θ = ω t + δ with ω =
v

R
.

The x component of the particle’s position is (figure 14-6 of Tipler-Mosca)

x = A cos(θ) = A cos(ω t + δ)

which is the same as for simple harmonic motion.

Demonstration: Projected shadow of a rotating peg an an object on a spring move
in unison when the periods agree.
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Energy in Simple Harmonic Motion

When an objects undergoes simple harmonic motion, the systems’s potential and
kinetic energies vary in time. Their sum, the total energy E = K + U is constant.
For the force −k x, with the convention U(x = 0) = 0, the system’s potential
energy is

U = −
∫ x

0

F (x′) dx′ =
∫ x

0

k x′ dx′ =
k

2
x2 .

Substitution for simple harmonic motion gives

U =
k

2
A2 cos2(ω t + δ) .

The kinetic energy is

K = m
v2

2
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Substitution for simple harmonic motion gives

K =
1
2
m ω2 A2 sin2(ω t + δ)2 .

Using ω2 = k/m,

K =
k

2
A2 sin2(ω t + δ)2 .

The total energy is the sum

E = U + K =
k

2
A2

[
cos2(ω t + δ) + sin2(ω t + δ)2

]
=

k

2
A2 .

I.e., the total energy is proportional to the amplitude squared.

Plots of U and K versus t: Figures 14-7 of Tipler-Mosca.

Potential energy as function of x: Figure 14-8 of Tipler-Mosca.
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Average kinetic and potential energies:

Uav = Kav =
1
2

Etotal .

Turning points at the maximum displacement |x| = A.

PRS: At the turning points the total energy is?

1. All kinetic. 2. All potential.

3. Half potential and half kinetic.

At x = 0 the total energy is?

1. Kinetic. 2. Potential.

3. Half potential and half kinetic.
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General Motion Near Equilibrium

Any smooth potential curve U(x) that has a minimum at, say x1, can be
approximated by

U = A + B (x− x1)2

and the force is given by

Fx = −dU

dx
= −2B (x− x1) = −k (x− x1)

with k = 2B.

Compare figures 14-9 and 14-10 of Tipler-Mosca.
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