
Wave Motion (Chapter 15)

Waves are moving oscillations. They transport energy and momentum through
space without transporting matter. In mechanical waves this happens via a
disturbance in a medium.

Transverse waves: The disturbance is perpendicular to the direction of
transportation (figure 15-1 of Tipler-Mosca).

Longitudinal waves: The disturbance is parallel to the propagation (figure 15-2 of
Tipler-Mosca).

Wave Pulses:

In a co-moving reference frame a wave pulse is at all times described by a function
f(x′). The x coordinate in the Lab system is

x = x′ ± v t
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where the wave pulse becomes

y = f(x− v t) wave moving right

or y = f(x + v t) wave moving left .

The function f is called wave function.

Speed of Waves:

The speed depends on the properties of the medium but is independent of the
motion of the source of the waves. For example, the speed of sound from a car
depends only on the properties of the air and not on the motion of the car.

For wave pulses on a string one has

v =

√
F

µ

where F is the tension (T is used for the period) and µ the linear mass density.
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For sound waves in a fluid the speed is

v =

√
B

ρ

where B = 4P/(4V/V ) is defines the bulk modulus (P pressure and V volume)
and ρ is the equilibrium density of the medium.

For sound waves in a gas such as air, the bulk modulus is proportional to the
pressure, wich in turn is proportional to the density ρ and the absolute temperature
TK the gas (chapter 19). Then,

v =

√
γ R TK

M

where R = 8.314 J/mol ·K is the universal gas constant, M is the molar mass
of the gas and γ is a constant, which characterizes the kind of gas (γ = 1.4 for
diatomic molecules).
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Derivation of v for a string:

A small segment of the string 4s = R θ is moving on a circular path (figure 15-5
of Tipler-Mosca). It is subject to the radial force

Fr = 2F sin(θ/2) = F θ

The mass of the element is m = µ4s = µR θ. As v2/R is the centripetal
acceleration, Newton’s second law gives

Fr = m
v2

R
= µR θ

v2

R
.

Putting the two equation for Fr together, we find

F θ = µR θ
v2

R
⇒ v =

√
F

µ
.
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The Wave Equation

We can apply Newton’s laws to a segment of the string to derive a differential
equation, known as the wave equation, which relates the spatial derivative of y(x, t)
to its time derivatives.

Figure 15-6 of Tipler-Mosca shows a segment of the string. We consider only small
vertical displacements. Then the length of the segment is approximately 4x and
its mass is m = µ4x, where µ is the string’s mass per unit length. The segment
moves vertically and the net force in this direction is

Fy = F sin(θ2)− F sin(θ1)

For small angles sin(θ) = tan(θ) = θ holds, such that we can re-write Fy as

Fy = F tan(θ2)− F tan(θ1)
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The tangent of the angle made by the string with the horizontal is the slope S
of the curve formed by the string. We have

S = tan(θ) =
4y

4x
=

∂y

∂x

where the r.h.s is the limit 4x→ 0, a partial derivative. This is the derivative of a
function of several variables with respect to one of the variables, while the others
are held constant. Then

Fy = F 4S = µ4x
∂2y

∂t2

where the r.h.s. is the mass µ4x times the acceleration. Therefore,

F
4S

4x
= F

∂2y

∂x2
= µ

∂2y

∂t2
.
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This is the wave equation

∂2y

∂x2
=

1
v2

∂2y

∂t2
with v =

√
F

µ
.

By differentiation one can show that the wave equation is satisfied by any function
y(x− v t).
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Harmonic Waves

If one end of a string is attached to a vibrating fork that is moving up and down
with an oscillation of frequency f , a sinusoidal wave propagates along the string
(figure 15-7 of Tipler-Mosca). It is called a harmonic wave. The distance after
which the wave repeats itself, for example from crest to crest, is the wavelength λ.

As the wave propagates, each point moves up and down in simple harmonic motion,
which is perpendicular to the direction of propagation. During one period T = 1/f ,
the wave moves a distance of one wavelength, so its speed is

v =
λ

T
= f λ .

Later we see that other waves are superpositions of harmonic waves. The wave
function of a harmonic wave is

y(x, t) = A sin [k (x− vt)] = A sin(k x− ω t)
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where A is the amplitude, k the wave number, and for the angular frequency the
following equations hold

ω = k v = 2π f =
2π

T
=

2π v

λ
.

Energy of Harmonic Waves

The kinetic energy of a wave segment is

4K =
1
2
4m v2

y =
1
2

µ4x

(
∂y

∂t

)2

.

Using y(x, t) = A sin(k x− ω t) we obtain vy = ∂y/∂t = −ω A cos(k x− ω t) and
the kinetic energy is

4K =
1
2

µω2 A24x cos2(k x− ω t) .
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The potential energy is the work done in stretching the string, which for small
oscillations can shown to be (Tipler-Mosca, problem 120)

4U =
1
2

F 4x

(
∂y

∂x

)2

where F is the tension.

Using ∂y/∂x = k A cos(k x − ω t), and F = µ v2 = µω2/k2 the potential energy
of the segment is

4U =
1
2

(
µω2

k2

)
k2 A24x cos2(k x− ω t)

=
1
2

µω2 A24x cos2(k x− ω t)

Therefore, the total energy is

4E = 4K +4U = µω2 A24x cos2(k x− ω t) .

In contrast to simple harmonic osciallations, the energy is not constant, but moves.
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The average energy is

4Eav =
1
2

µω2 A24x

which is the same result as for simple harmonic motion of a mass µ4x. The
average rate at which energy is transmitted is the average power:

Pav =
dEav

dt
=

1
2

µω2 A24x

4t
=

1
2

µω2 A2 v

The average energy and power are proportional to the square of the amplitude.

Harmonic Sound Waves

Harmonic sound waves can be generated by a tuning fork or loudspeaker that is
vibrating with simple harmonic motion. This causes displacements of molecules
along the direction of motion, which lead to variations in the density and pressure.
One can see (Tipler-Mosca figure 15-10) that the pressure or density wave is 90o

out of phase with the displacement wave. Thus, the pressure is given by

p(x, t) = p0 sin(k x− ω t− π/2) .
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Waves in Three Dimensions

Wave may be generated by a point source moving up and down with harmonic
motion. The wavelength is the distance between successive wave crests, which in
this case are concentric circles, called wavefronts.

The motion of any set of wavefronts can be indicated by rays, which are directed
perpendicular to the wave fronts (figure 15-12 of Tipler-Mosca).

At a great distance from a point source, a small part of the wavefront can be
approximated by a plane wave, for which the rays are parallel lines.
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Wave Intensity

The average power per unit area that is incident perpendicular to the direction
of propagation is called the intensity. At a distance r from a point source, the
intensity is

I =
Pav

4π r2
.

Intensity Level and Loudness:

The psychological sensation of loudness varies approximately logarithmically rather
than directly with the intensity. The intensity level of sound is therefore measured
on a logarithmic scale defined by

β = 10 log
I

I0
in units of decibels (dB) .

Here I0 is a reference level defined by the approximate threshold of hearing:
I0 = 10−12W/m2. Examples are listed in table 15-1 of Tipler-Mosca.
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