
Waves Encountering Barriers

Reflection and Refraction:

When a wave is incident on a boundary that separates two regions of different
wave speed, part of the wave is reflected and part is transmitted. Figure 15-17 of
Tipler-Mosca shows: (a) A pulse on a light string that is attached to a heavier
string. (c) A pulse on a heavy string that is attached to a light string. In the first
case the replected pulse is inverted in the second not. The same happens with a
light and a heavy spring attached to one another.

In three dimensions, a boundary between two regions of differing wave speed is a
surface. Figure 15-19 of Tipler-Mosca shows a ray incident on such a surface.

The reflected ray makes an angle with the normal to the surface equal to that of
the incident ray.

1



The transmitted ray is bent towards or away from the normal, a process called
refraction. When the wave speed in the second medium is greater than that in the
incident medium, the ray is bent away from the normal. As the angle of incidence
is increased, the angle of refraction increases unit it reaches 900. This defines a
critical angle of incidence and for even greater incident angles, there is no refracted
ray, a phenomenon called total internal reflection.

In total internal reflection, the wave function drops to zero exponentially fast, so
that it becomes negligible within a few wavelength from the surface. This can lead
to barrier penetration or tunneling.

Diffraction:

A wave encountering a small obstacle tends to bend around the obstacle. This
bending of the wavefront is called diffraction.
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When a wave encounters a barrier with an aperture, which is much smaller than
the wavelength, the wave bends and spreads out as a spherical circular wave. This
distinguishes the waves from particles (Figure 15-22 of Tipler-Mosca), which can
be regarded as waves with a wavelength so small that any aperture will be large in
comparison. In the ray approximation waves are traveling with no diffraction.

Sound waves with frequencies above 20,000Hz are called ultrasonic waves. Because
of their small wavelength they can be send out to be reflected from small objects.
Used by bats, sonar (sound navigation and ranging), sonogram for diagnostic
purposes.

3



The Doppler Effect

When a wave source and a receiver are moving relative to each other, the frequencey
is not the same as that omitted. This is called the Doppler effect after the Austrian
physicist who predicted this phenomenon.

The change in the frequency is slightly different depending on whether the source or
the receiver moves relative to the medium. When the source moves, the wavelength
changes, and the new frequency if found from the relation f = v/λ. When the
receiver moves, the frequency changes, while the wavelength is unchanged.

Consider that a source moves with speed us relative to the medium. The frequency
of the source is f0. The waves in front of the source are compressed, whereas
behind the source they are farther appart (Figure 15-24 of Tipler-Mosca). When v
is the speed of the wave in the medium, the new wavelength becomes

λ′ =
v ± us

f0
.
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In front of the source the minus sign applies, behind the source the plus sign. The
receiver (at rest) gets then the frequency

f ′ =
v

λ′ =
v f0

v ± us
=

f0

1± us/v
.

If the receiver moves with velocity ur relative to the medium, and the source is at
rest, the number of waves crests that pass by per second becomes

f ′ =
v ± ur

λ0
=

(
1± ur

v

)
f0 .

Here the plus sign stand when the receiver moves towards the source, otherwise
the minus sign applies.

When receiver and source move, one combines the two equations in the obvious
way.
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Example: The radar used by police to catch speeders relies on the Doppler effect.
Electromagnetic waves emitted by the transmitter are reflected by the car and the
Doppler shift is measured.

Schock Waves and Mach Number:

If a source moves with speed greater than the wave speed v, there will be no waves
in front of the source.

When a source accelerates to approach (and pass) wave speed, the waves pile up
as a shock wave. In case of a sound wave, this is heard as a sonic boom.

When the source travels at a constant speed u > v, the wave is confined to a cone
of angle

sin(θ) =
v t

u t
=

v

u
= Mach number,

see Figure 15-24 of Tipler-Mosca.
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Superpositions of Waves (Chapter 16)

When two waves meet in space, they add algebraically (superposition). The
superposition of harmonic waves is called interference. In 1801 Young observed the
interference of light. Davisson and Germer observed in 1927 the interference of
electron waves.

The principle of superposition:

When two or more waves combine, the resultant wave is the algebraic sum of the
individual waves:

y3(x, t) = y1(x, t) + y2(x, t) .

Examples: Figure 16-1 of Tipler-Mosca.

Interference of Harmonic Waves:

Two wave sources that are in phase or have a constant phase difference are said to
be coherent, otherwise they are said to be incoherent.
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We consider the superposition of two (Figure 16-2 Tipler-Mosca) coherent waves

y1 = y0 sin(k x− ω t)

y2 = y0 sin(k x− ω t + δ)

y3 = y1 + y2 = y0 sin(k x− ω t) + y0 sin(k x− ω t + δ) .

Using the trigonometric identity

sin(θ1) + sin(θ2) = 2 cos[(θ1 − θ2)/2] sin[(θ1 + θ2)/2]

y3 = 2y0 cos(δ/2) sin(k x− ω t + δ/2) .

The resulting wave has interesting properties:

If the two waves are in phase, δ = 0, the amplitude of y3 is 2y0, constructive
interference (Figure 16-3 of Tipler-Mosca).

If the two wave are 180o out of phase, δ = π, then y3 = 0, destructive interference
(Figure 16-4 of Tipler-Mosca).
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Beats

This phenomenon is caused by the interference of sound waves with slightly different
frequencies.What do we hear? For equal amplitudes we have at a fixed point, up
to a phase constant, the pressure fluctuation

p = p1 + p2 = p0 sin(ω1 t) + p0 sin(ω2 t)

p = 2p0 cos[(ω1 − ω2) t/2] sin[(ω1 + ω2) t/2]

= 2p0 cos[(4ω/2) t] sin[(ωav t]

where 4ω = ω1 − ω2 and ωav = (ω1 + ω2)/2. The frequencies of the factors are

fbeat = 24f =
24ω

2π
and fav =

2ωav

2π
.

The tone we hear has the average frequency fav, whose amplitude 2p0 cos(2π fbeat t)
is modulated by the beat frequency, which is much smaller than the average
frequency (Figure 16-5 of Tipler-Mosca). Beats can be used to tune a piano.
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Phase Difference due to Path Difference

The wave function from two coherent sources, oscillating in phase, can be written
as (Figure 16-6 of Tipler-Mosca)

p = p1 + p2 = p0 sin(k x1 + ω t) + p0 sin(k x2 + ω t) .

An example is given in Figure 16-8 of Tipler-Mosca. The phase difference for these
two wave function is

δ = k (x2 − x1) = 2π
4x

λ
.

The amplitude is 2p0 cos(δ/2) and Figure 16-9 of Tipler-Mosca shows how the
intensity varies with the path difference.

The Double-Slit Experiment:

Interference of light is difficult to observe, because a light beam is usually the
result of millions of atoms radiating incoherently. Coherence in optics is commonly
achieved by splitting the light beam from a single source. One method of achieving
this is by diffraction of a light beam by two slits in a barrier (Thomas Young 1801).
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Standing Waves (Chapter 16-2)

When waves are confined in space, reflections at both ends cause the wave to travel
in both directions. For a string or pipe, there are certain frequencies for which
superposition results in a stationary pattern called standing wave. The frequencies
that produce these patterns are called resoncance frequencies. Each such frequency
with its accompanying wave function is called a mode of vibration. The lowest
frequency produces the fundamental mode or first harmonic. For each frequency
there are certain points on the string that do not move. Such points are called
nodes. Midway between each pair of nodes is a point of maximum amplitude of
vibration called an antinode.

String fixed at both ends (Figure 16-10 of Tipler-Mosca):

The standing wave condition is

L = n
λn

2
, n = 1, 2, 3, . . .
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and with fn λn = v the resonance frequencies become

fn = n
v

2L
= n f1, n = 1, 2, 3, . . .

where f1 is the fundamental frequency. Example: pianos.

String fixed at one end (Figure 16-16 of Tipler-Mosca):

The free end is an antinode. The standing wave condition can thus be written

L = n
λn

4
, n = 1, 3, 5, . . .

and with fn λn = v the resonance frequencies become

fn = n
v

4L
= n f1, n = 1, 3, 5, . . .

where f1 is the fundamental frequency. Example: the air column in an organ pipe.
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Wave Functions for Standing Waves

Standing wave occur due to the superposition of the reflected waves. When a sting
vibrates in its nth mode, a point on the string moves with simple harmonic motion.
Therefore, the wave function is given by

y(x, t) = An(x) cos(ωn t + δn)

where ωn is the angular frequency, δn the phase constant, and A(x) the amplitude,
which depends on the location on the string. At an instant where the vibration is
at its maximum amplitude, the shape of the string is

An(x) = An sin(kn x)

where kn = 2π/λn is the wave number. The wave function for a standing wave in
the nth harmonic can thus be written

yn(x, t) = An sin(kn x) cos(ωn t + δn) .
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Superpositions of Standing Waves
In general, a vibrating system does not vibrate in a single harmonic mode. Instead,
the motion consists of a mixture of the allowed harmonics and the wave function is
a linear combination of the harmonic wave functions:

y(x, t) =
∑

n

An sin(kn x) cos(ωn t + δn)

where kn = 2π/λn, ωn = 2π fn, and An, δn are constants which depend on the
initial position and velocity of the string. Interestingly each wave, which fulfills
the appropriate boundary conditions (here y = 0 at x = 0 and x = L), can be
expanded in this way.

Harmonic Analysis and Synthesis:

Waves can be analyzed in terms of harmonics. Example: Figure 16-24 of Tipler-
Mosca shows the relative intensities for a tuning fork, a clarinet, and an oboe, each
playing a tone at a fundamental frequency of 440 Hz.
The inverse is harmonics synthesis, the construction of a periodic wave from
harmonic components. Example: Figure 16-25 and 16-26 of Tipler-Mosca.
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Wave Packets and Dispersion

Pulses, which are not periodic, can also be expanded into sinusoidal waves of
different frequencies. However a continuous distributions of frequencies rather than
a discrete set of harmonics is needed. These are wave packets. The characteristic
feature of a wave pulse is that it has a beginning and an end. If the duration of
the pulse is 4t, the range of frequencies 4ω, needed to describe the impulse, is
given by the relation

4ω4t ∼ 1 .

E.g., if 4t is very small, 4ω is very large and vice versa.

A wave pulse produced by a source of duration 4t has a width 4x = v4t in
space, where v is the wave speed. A range of frequencies 4ω implies a range of
wave numbers 4k = 4ω/v. Therefore, 4ω4t ∼ 1 implies

4k4x ∼ 1 .

If a wave packet is to maintain its shape as it travels, all of the components must
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travel at the same speed. A medium where this happens is called non-dispersive
medium.

Air is a non-dispersive medium for sound waves, but solids and liquids are generally
not.

A familiar example for the dispersion of light waves is the rainbow.

When the speed of the wave component depends only slightly on the their
wavelength, the wave packet changes shape only slowly as it travels. However, the
speed of the wave packet, called group velocity, is not the same as the (average)
speed of the components, called phase velocity. For example, the group velocity of
surface waves in deep water is half the phase velocity.
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