Announcements

1. Do not bring the yellow equation sheets to the miderm. Idential sheets will be attached to the problems.
2. Some PRS transmitters are missing. Please, bring them back!

Kinematics

Displacement of a point particle:

$$
\triangle \vec{x}=\vec{x}_{2}-\vec{x}_{1}
$$

where \vec{x}_{1} is the position at time t_{1} and \vec{x}_{2} is the position at time $t_{2}, t_{2}>t_{1}$. Instantaneous velocity

$$
\vec{v}=\frac{d \vec{x}}{d t}
$$

This is the slope of the tangent of the curve $\vec{x}(t)$ at t and called derivative.
The instantaneous acceleration is:

$$
\vec{a}=\frac{d \vec{v}}{d t}=\frac{d^{2} \vec{x}}{d t^{2}}
$$

Motion With Constant Acceleration

$$
\frac{d \vec{v}}{d t}=\vec{a}=\vec{a}_{\text {average }}
$$

Integration:

$$
\vec{v}=\frac{d \vec{x}}{d t}=\vec{v}_{0}+\vec{a} t
$$

Here \vec{v}_{0} is the velocity at time zero, the first initial condition.
Second integration:

$$
\vec{x}=\vec{x}_{0}+\vec{v}_{0} t+\frac{1}{2} \vec{a} t^{2}
$$

Here \vec{x}_{0} is the second initial condition, the position at time zero.

Newton's Laws

1. Law of inertia. An object continues to travel with constant velocity (including zero) unless acted on by an external force.
2. The acceleration \vec{a} of an object is given by

$$
m \vec{a}=\vec{F}_{\mathrm{net}}=\sum_{i} \vec{F}_{i}
$$

where m is the mass of the object and $\vec{F}_{\text {net }}$ the net external force.
3. Action $=$ Reaction. Forces always occur in equal and opposite pairs. If object A exterts a force on object B, an equal but opposite force is exterted by object B on A.

Friction

If an external force acts on a heavy box standing on a floor (see figure 5-1 of Tipler-Mosca), the box may not move because the external force is balanced by the force f_{s} of static friction. Its maximum value $f_{s, \max }$ is obtained when any further increase of the external force will cause the box to slide.

$$
f_{s, \text { max }}=\mu_{s} F_{n}
$$

where μ_{s} is called the coefficient of static friction. If the box does not move we have

$$
f_{s} \leq f_{s, \max } .
$$

Kinetic friction (also called sliding friction): Once the box slides, the opposing force is the force of

$$
f_{k}=\mu_{k} F_{n}
$$

where μ_{k} is called the coefficient of kinetic friction.
Experimentally it is found that $\mu_{k}<\mu_{s}$.

Example: Two Connected Blocks

Tipler-Mosca figures 5-9 and 5-10.
PRS:
How many forces act on block 2? Press the number on your remote!
How many forces act on block 1? press the number on your remote!
Moving blocks:

$$
\begin{gathered}
T=m_{1} a+\mu_{k} m_{1} g \\
\left(m_{2} g-T\right)=m_{2} a \\
m_{2} g-\mu_{k} m_{1} g=m_{1} a+m_{2} a=\left(m_{1}+m_{2}\right) a \\
a=\frac{m_{2} g-\mu_{k} m_{1} g}{m_{1}+m_{2}} \quad \text { or } \quad \mu_{k}=\frac{m_{2} g-\left(m_{1}+m_{2}\right) a}{m_{1} g}
\end{gathered}
$$

Work and Energy

Motion With Constant Force:
The work W done by a constant Force \vec{F} whose point of application moves through a distance $\triangle \vec{x}$ is defined to be

$$
W=F \cos (\theta) \triangle x
$$

where θ is the angle between the vector \vec{F} and the vector $\triangle \vec{x}$, see figure $6-1$ of Tipler-Mosca.

If $\triangle \vec{x}$ is along the x-axis, i.e.

$$
\triangle \vec{x}=\triangle x \hat{i}=\triangle x \hat{x}
$$

then

$$
W=F_{x} \triangle x
$$

holds. Work is a scalar quantity that is positive if $\triangle x$ and F_{x} have the same sign and negative otherwise.

The SI unit of work and energy is the joule (J)

$$
1 J=1 \mathrm{~N} \cdot \mathrm{~m}=1 \mathrm{~kg} \mathrm{~m}^{2} / \mathrm{s}^{2}
$$

Work and Kinetic Energy

There is and important theorem, which relates the total work done on a particle to its initial and final speeds. If \vec{F} is the net force acting on a particle, Newton's second law gives

$$
\vec{F}=m \vec{a}
$$

The total work becomes

$$
W_{t o t}=m \vec{a} \triangle \vec{x}=\frac{1}{2} m \vec{v}_{f}^{2}-\frac{1}{2} m \vec{v}_{i}^{2}
$$

The kinetic energy of the particle is defined by:

$$
K=\frac{1}{2} m \vec{v}^{2}
$$

and the mechanical work-kinetic energy theorem states: The total work done on the particle is equal to the change in kinetic energy

$$
W_{t o t}=K_{f}-K_{i}
$$

Potential Energy

Often work done by external forces on a system does not increase the kinetic energy of the system, but is instead stored as potential energy.

Conservative Forces:

A force is called conservative when its total work done on a particle along a closed path is zero (figure 6-22 of Tipler-Mosca).

Potential-Energy Function:

For conservative forces a potential energy function U can be defined, because the work done between two positions 1 and 2 does not depend on the path:

$$
\begin{gathered}
\Delta U=U_{2}-U_{1}=-\int_{s_{1}}^{s_{2}} \vec{F} \cdot d \vec{s} \\
d U=-\vec{F} \cdot d \vec{s} \text { for infinitesimal displacements. }
\end{gathered}
$$

Example: Gravitational potential energy near the earth's surface.

$$
\begin{gathered}
d U=-\vec{F} \cdot d \vec{s}=-(-m g \hat{j}) \cdot(d x \hat{i}+d y \hat{j}+d z \hat{k})=m g d y \\
U=\int d U=m g \int_{y_{0}}^{y} d y^{\prime}=m g y-m g y_{0}
\end{gathered}
$$

Work-Energy Theorem with Kinetic Friction

Non-conservative Forces: Not all forces are conservative. Friction is an example of a non-conservative force. The energy dissipated by friction is thermal energy (heat):

$$
f \triangle s=\triangle E_{\text {therm }}
$$

where f is the frictional force applied along the distance Δs. The work-energy theorem reads then

$$
W_{\mathrm{ext}}=\triangle E_{\mathrm{mech}}+\triangle E_{\mathrm{therm}} .
$$

Example

Assume the block enters a frictionless loop of radius R. What is the minimal kinetic energy K_{i} the block needs to reach the top of the loop without leaving the track?

$$
K_{i}=\frac{1}{2} m v_{i}^{2}=m g 2 R+\frac{1}{2} m v_{t}^{2}
$$

with

$$
\frac{v_{t}^{2}}{R}=g
$$

Therefore,

$$
K_{i}=\frac{5}{2} m g R
$$

Compare figure 7-5 of Tipler-Mosca.

Momentum Conservation

The Center of Mass (CM):
The $\mathrm{CM} \vec{r}_{\mathrm{cm}}$ moves as if all the external foces acting on the system were acting on the total mass M of the system located at this point. In particular, it moves with constant velocity, if the external forces acting on the system add to zero. Definition:

$$
M \vec{r}_{\mathrm{cm}}=\sum_{i=1}^{n} m_{i} \vec{r}_{i} \quad \text { where } \quad M=\sum_{i=1}^{n} m_{i} .
$$

Here the sum is over the particles of the system, m_{i} are the masses and \vec{r}_{i} are the position vectors of the particles. In case of a continuous object, this becomes

$$
M \vec{r}_{\mathrm{cm}}=\int \vec{r} d m
$$

where $d m$ is the position element of mass located at position \vec{r}.

Momentum:
The mass of a particle times it velocity is called momentum

$$
\vec{p}=m \vec{v} .
$$

Newton's second law can be written as

$$
\vec{F}_{\mathrm{net}}=\frac{d \vec{p}}{d t}=\frac{d(m \vec{v})}{d t}=m \frac{d \vec{v}}{d t}=m \vec{a}
$$

as the masses of our particles have been constant.

The total momentum \vec{P} of a system is the sum of the momenta of the individual particles:

$$
\vec{P}=\sum_{i=1}^{n} \vec{p}_{i}=\sum_{i=1}^{n} m_{i} \vec{v}_{i}=M \vec{v}_{\mathrm{cm}}
$$

Differentiating this equation with respect to time, we obtain

$$
\frac{d \vec{P}}{d t}=M \frac{d \vec{v}_{\mathrm{cm}}}{d t}=M \vec{a}_{\mathrm{cm}}=\vec{F}_{\mathrm{net}, \mathrm{ext}}
$$

The law of momentum conservation: When the net external force is zero, the total momentum is constant

$$
\vec{F}_{\text {net,ext }}=0 \Rightarrow \vec{P}=\text { constant } .
$$

Example:

Inelastic scattering, figure 8-30 of Tipler-Mosca.
A bullet of mass m_{1} is fired into a hanging target of mass m_{2}, which is at rest. The bullet gets stuck in the target. Find the speed v_{i} of the bullet from the joint velocity v_{f} of bullet and target after the collision.

Rotation

1. The angular velocity $\vec{\omega}$. Direction: Right-hand-rule.
2. In accordance with the right-hand-rule the torque is defined as a vector: $\vec{\tau}=$ $\vec{r} \times \vec{F}$.
3. Angular Momentum Definition: $\vec{L}=\vec{r} \times \vec{p}$.

Like the torque angular momentum is defined with respect to the point in space where the position vector \vec{r} originates. For a rotation around a symmetry axis we find $\vec{L}=I \vec{\omega}$ (magnitude $L=I \omega$).
4. Rotational kinetic energy: $K_{\text {rot }}=\frac{1}{2} I \omega^{2}$.

Energy conservation for an object (initially at rest) rolling down an inclined plane:

$$
\begin{aligned}
m g h & =\frac{1}{2} m v^{2}+\frac{1}{2} I \omega^{2} \\
& =\frac{1}{2} m v^{2}+\frac{1}{2} I \frac{v^{2}}{R^{2}}
\end{aligned}
$$

Torque and Angular Momentum

The net external torque acting on a system equals the rate of change of the angular momentum of the system:

$$
\sum_{i} \vec{\tau}_{i, \text { ext }}=\frac{d \vec{L}}{d t}
$$

Conservation of Angular Momentum

If the net external torque acting on a system is zero, the total angular momentum of the system is constant.

$$
\frac{d \vec{L}}{d t}=\vec{\tau}_{\text {net }}=0 \quad \Rightarrow \quad \vec{L}=\text { constant }
$$

