- 5. 8:00 Hoch 6. 9:05 Hoch
- 7. 10:10 Balicas
- 8. 11:15 Jain
- 9. 12:20 Jain

Other (write in):

SHOW ALL WORK TO GET FULL CREDIT! - ALL ANSWERS MUST SHOW UNITS

In the following air resistance is neglected and gravity $(g = 9.81 \text{ m/s}^2)$ acts in the negative y-direction. At time t = 0 a ball is kicked to have an intitial speed of $v_0 = 22 \text{ m/s}$ at an angle of 25° with respect to the ground. Choose you coordinate system, so that the initial position of the ball is at $x_0 = y_0 = 0$, the y axis is up and the x axis is on the ground, in the direction of the motion of the ball.

1. [3 Pts] Find the initial velocities $v_{x,0}$ and $v_{y,0}$.

$$v_{x,0} = v_0 \cos(\theta) = 19.9 \,\mathrm{m/s}$$

$$v_{y,0} = v_0 \sin(\theta) = 9.30 \,\mathrm{m/s}$$

2. [5 Pts] Write down the solutions for x(t) and y(t).

$$x(t) = v_{x,0} t$$

$$y(t) = v_{y,0} t - \frac{1}{2} g t^2$$

3. [4Pts] Find the time t_{max} at which the ball reaches its maximum height.

$$t_{\text{max}} = \frac{v_{y,0}}{g} = 0.948 \,\text{s}$$

4. [2 Pts] Find the maximum height.

$$y_{\text{max}} = y(t_{\text{max}}) = v_{y,0} t_{\text{max}} - \frac{1}{2} g t_{\text{max}}^2 = 4.41 \text{ m}$$

5. [4Pts] How long is the ball in the air, before it returns to hit the ground?

$$t_1 = 2 t_{\text{max}} = 1.90 \,\text{s}$$

6. [2 Pts] At what distance from its original position does the ball hit the ground.

$$x_1 = v_{x,0} t_1 = 37.8 \,\mathrm{m}$$