Waves

Wave Motion (Chapter 15)

Waves are moving oscillations. They transport energy
and momentum through space without transporting
matter.  In mechanical waves this happens via a
disturbance in a medium.

Transverse waves: The disturbance is perpendicular to
the direction of transportation (figure 15-1).

Longitudinal waves: The disturbance is parallel to the
propagation (figure 15-2).

Wave Pulses:

In a co-moving reference frame a wave pulse is at all
times described by a function f(z’). The x coordinate
in the Lab system is

r=1z' +ut
where the wave pulse becomes

y = f(x—vt) wave moving right

or y = f(xz+wvt) wave moving left .

The function f is called wave function.
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Speed of Waves:

The speed depends on the properties of the medium but
is independent of the motion of the source of the waves.
For example, the speed of sound from a car depends
only on the properties of the air and not on the motion
of the car.

For wave pulses on a string one has

= |

where F' is the tension (T is used for the period) and p
the linear mass density.

For sound waves in a fluid the speed is

B
V=4/—
P

where B = AP/(AV/V) is defines the bulk modulus
(P pressure and V volume) and p is the equilibrium
density of the medium.
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For sound waves in a gas such as air, the bulk modulus is
proportional to the pressure, wich in turn is proportional
to the density p and the absolute temperature Tk the
gas (chapter 19). Then,

v — ’}/RTK
“V

where R = 8.314 J/mol - K is the universal gas constant,
M is the molar mass of the gas and ~ is a constant,
which characterizes the kind of gas (v = 1.4 for diatomic
molecules).

Derivation of v for a string:

A small segment of the string As = R 6 is moving on a
circular path (figure 15-5 of Tipler). It is subject to the
radial force

F,.=2F sin(4/2) = F 0

The mass of the element is m = u/As = pRO. As
v2/R Is the centripetal acceleration, Newton’'s second

law gives

’U2 2
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Putting the two equation for F. together, we find

F@z,uRQU— = =

2 F
R o

The Wave Equation

We can apply Newton's laws to a segment of the string
to derive a differential equation, known as the wave
equation, which relates the spatial derivative of y(x,t)
to its time derivatives.

Figure 15-6 of Tipler shows a segment of the string.
We consider only small vertical displacements. Then
the length of the segment is approximately Az and its
mass is m = pu/Ax, where p is the string’s mass per unit
length. The segment moves vertically and the net force
in this direction is

F, = F sin(f2) — F sin(6,)

For small angles sin(#) = tan(f) = 0 holds, such that
we can re-write F), as

Fy = F tan(ﬁg) — F tan(@l)
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The tangent of the angle made by the string with the
horizontal is the slope S of the curve formed by the
string. We have

Ay 0Oy
Az Oz

S = tan(f) =

where the r.h.s is the limit Ax — 0, a partial derivative.
This is the derivative of a function of several variables
with respect to one of the variables, while the others are
held constant. Then
0%y
F,=FAS=ulxr—=
Yy :u’ 81:2
where the r.h.s. is the mass y Az times the acceleration.
Therefore,

This is the wave equation

%y L 0% ith v F
—~ = ——"w = 4/—.
ox?  v? Ot? L

By differentiation one can show that the wave equation
is satsified by any function y(x — v t).
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Harmonic Waves

If one end of a string is attached to a vibrating fork that
iIs moving up and down with an oscillation of frequency
f, a sinusoidal wave propagates along the string (figure
15-7 of Tipler). It is called a harmonic wave. The
distance after which the wave repeats itself, for example
from crest to crest, is the wavelength .

As the wave propagates, each point moves up and down
in simple harmonic motion, which is perpendicular to the
direction of propagation. During one period T' = 1/f,
the wave moves a distance of one wavelength, so its
speed is \
V== fA.

Later we see that other waves are superpositions of
harmonic waves. The wave function of a harmonic wave

y(z,t) = A sin [k (z —vt)] = Asin(kz — wt)

where A is the amplitude, k& the wave number, and for
the angular frequency the following equations hold

2 2
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Energy of Harmonic Waves

The kinetic energy of a wave segment is

1 1 Oy ?
AK ==-/Amuv2 == —=
5 MUy 2,uAa: ((975)

Using y(z,t) = A sin(k z—wt) we obtain v, = Jy/0t =
—w A cos(kx — wt) and the kinetic energy is

1
AK = §,uw2 A% Az cos?(kx —wt) .
The potential energy is the work done in stretching
the string, which for small oscillations can shown to be

(Tipler, problem 123)

1 9
AU = 3 F Az <%) where F' 1is the tension.
T

Using 0y/0x = kA cos(kx —wt), and F = pov? =
pw?/k? the potential energy of the segment is

1
AU = (’ul:; ) k* A* Az cos®(kx — wt)
1

= §,uw2 A* Az cos®(kx —wt)

RIE
vs‘ "/»[/"'2
e
e 2 7
& $%
1851




Waves

Therefore, the total energy is
AE = AK + AU = pw? A* Az cos?(kx —wt) .

In contrast to simple harmonic motion, the energy is not
constant, but moves. The average energy is

1
AFE,, = 5 pw? A% Az

which is the same results as for simple harmonic motion
of a mass u Axz. The average rate at which energy is
transmitted is the average power:

db,, 1 A 1
— ——,uw2A2—x:—,uw2A2v

Py, =
dt 2 ANt 2

The average energy and power are proportional to the
square of the amplitude.
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Harmonic Sound Waves

Harmonic sound waves can be generated by a tuning fork
or loudspeaker that is vibrating with simple harmonic
motion. This causes displacements of molecules along
the direction of motion, which lead to variations in the
density and pressure. One can see (Tipler figure 15-10)
that the pressure or density wave is 90° out of phase
with the displacement wave. Thus, the pressure is given
by
p(x,t) =po sin(kxr —wt —w/2) .

Waves in Three Dimensions

Wave may be generated by a point source moving up
and down with harmonic motion. The wavelength is the
distance between successive wave crests, which in this
case are concentric circles, called wavefronts.

The motion of any set of wavefronts can be indicated
by rays, which are directed perpendicular to the wave
fronts (figure 15-12 of Tipler).

At a great distance from a point source, a small part of
the wavefront can be approximated by a plane wave, for
which the rays are parallel lines.
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Standing Waves (Chapter 16-2)

When waves are confined in space, reflections at both
ends cause the wave to travel in both directions.
For a string or pipe, there are certain frequencies for
which superposition results in a stationary pattern called
standing wave. The frequencies that produce these
patterns are called resoncance frequencies. Each such
frequency with its accompanying wave function is called
a mode of vibration. The lowest frequency produces the
fundamental mode or first harmonic. For each frequency
there are certain points on the string that do not move.
Such points are called nodes. Midway between each pair
of nodes is a point of maximum amplitude of vibration
called an antinode.

String fixed at both ends (Figure 16-11 of Tipler):

The standing wave condition is

L:n%, n=1273,...

and with f,, \,, = v the resonance frequencies become

fnzn%znfl, n=123 ..

where f; is the fundamental frequency. Example: pianos.




