Waves

Superpositions of Waves (Chapter 16)

When two waves meet in space, they add algebraically
(superposition). The superposition of harmonic waves
is called interference. In 1801 Young observed the
interference of light. Davisson and Germer observed in
1927 the interference of electron waves.

The principle of superposition:

When two or more waves combine, the resultant wave is
the algebraic sum of the individual waves:

y3($,t) — yl(xvt) + y2(x7t) .

Examples: Figure 16-1 of Tipler.
Interference of Harmonic Waves:

Two wave sources that are in phase or have a constant
phase difference are said to be coherent, otherwise they
are said to be incoherent. We consider now two coherent
waves

y1 = yosin(kx —wt)

yo = yosinlkx —wt+9).
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The resultant wave is
ys = y1+y2 = yo sin(kz —wt)+yo sin(kz—wt+9) .
Using the trigonometric identity
sin(f1) + sin(f3) = 2 cos[(61 — 02)/2] sin[(61 + 05) /2]
we get

Y3 = 2y cos(6/2) sin(kx —wt+6/2) .

The resulting wave has interesting properties:

If the two waves are in phase, 0 = 0, the amplitude of y3
is 2yg, constructive interference (Figure 16-3 of Tipler).

If the two wave are 180° out of phase, § = m, then
y3 = 0, destructive interference (Figure 16-4 of Tipler).
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Beats:

This phenomenon is caused by the interference of sound
waves with slightly different frequencies.What do we
hear? For equal amplitudes we have at a fixed point, up
to a phase constant, the pressure fluctuation

p = p1+ p2 = po sin(w;y t) + pg sin(ws t)

p = 2pg cos|(wg —ws)t/2] sin[(wy + ws)t/2]
= 2pg cos[(Aw/2) t] sin|(way t]

where Aw = w1 — we and w,y = (w1 + w2)/2. The
frequencies of the factors are

2\ 2Way
fbeat — QAf — ~ and fav — “ .
27 27

The tone we hear has the average frequency f,, whose
amplitude 2pg cos(27 fpeat t) is modulated by the beat
frequency, which is much smaller than the average
frequency (Figure 16-5 of Tipler). Beats can be used to
tune a piano.
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Phase Difference due to Path Difference:

The wave function from two coherent sources, oscillating
in phase, can be written as (Figure 16-6 of Tipler)

p=p1+p2=posin(kr; +wt)+ posin(kxs +wt) .

An example is given in Figure 16-8 of Tipler. The phase
difference for these two wave function is

JAN
(5:]{'(5132—331):27TT$.

The amplitude is 2py cos(d/2) and Figure 16-9 of Tipler
shows how the intensity varies with the path difference.

The Double-Slit Experiment:

Interference of light is difficult to observe, because a
light beam is usually the result of millions of atoms
radiating incoherently. Coherence in optics is commonly
achieved by splitting the light beam from a single source.
One method of achieving this is by diffraction of a light
beam by two slits in a barrier (Thomas Young 1801).
The intensity of the resulting pattern can be calculated,
see Figures 16-10 and 17-1 of Tipler for examples.
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Wave Functions for Standing Waves

Standing wave occur due to the superposition of the
reflected waves. When a sting vibrates in its nth mode,
a point on the string moves with simple harmonic motion.
Therefore, the wave function is given by

y(z,t) = A,(z) cos(wnt + dy)

where w,, is the angular frequency, o,, the phase constant,
and A(x) the amplitude, which depends on the location
on the string. At an instant where the vibration is at its
maximum amplitude, the shape of the string is

A,(x) = A, sin(k, x)

where k, = 27 /), is the wave number. The wave
function for a standing wave in the nth harmonic can
thus be written

yn(x,t) = A, sin(ky, x) cos(wn t + dy) .
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Superpositions of Standing Waves

In general, a vibrating system does not vibrate in a
single harmonic mode. Instead, the motion consists of a
mixture of the allowed harmonics and the wave function
Is a linear combination of the harmonic wave functions:

y(zx,t) = Z A, sin(k, x) cos(wy t + 6y)

where k, = 27/\,, wn = 2w f,, and A,, §, are
constants which depend on the initial position and
velocity of the string. Interestingly each wave, which
fulfills the appropriate boundary conditions (here y = 0
at = 0 and x = L), can be expanded in this way.

Harmonic Analysis and Synthesis:

Waves can be analyzed in terms of harmonics. Example:
Figure 16-24 of Tipler shows the relative intensities for
a tuning fork, a clarinet, and an oboe, each playing a
tone at a fundamental frequency of 440 Hz.

The inverse is harmonics synthesis, the construction of
a periodic wave from harmonic components. Example:

Figure 16-25 and 16-26 of Tipler.
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Wave Packets and Dispersion: Pulses, which are not
periodic, can also be expanded into sinusoidal waves of
different frequencies. However a continuous distributions
of frequencies rather than a discrete set of harmonics
is needed. These are wave packets. The characteristic
feature of a wave pulse is that it has a beginning and
an end. If the duration of the pulse is At, the range of
frequencies Aw, needed to describe the impulse, is given

by the relation
AwAt ~ 1 .

E.g., if At is very small, Aw is very large and vice versa.

A wave pulse produced by a source of duration At has a
width Ax = v At in space, where v is the wave speed.

A range of frequencies Aw implies a range of wave
numbers Ak = Aw/v. Therefore, Aw At ~ 1 implies

ANk NAx ~ 1.

If a wave packet is to maintain its shape as it travels,
all of the components must travel at the same speed.
A medium where this happens is called non-dispersive
medium.

Air is a non-dispersive medium for sound waves, but
solids and liquids are generally not.
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A familiar example for the dispersion of light waves is
the rainbow.

When the speed of the wave component depends only
slightly on the their wavelength, the wave packet changes
shape only slowly as it travels. However, the speed of
the wave packet, called group velocity, is not the same
as the (average) speed of the components, called phase
velocity. For example, the group velocity of surface
waves in deep water is half the phase velocity.
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