Thermodynamics

A Carnot engine can only be approximated by engineering
and in practice it is not a useful device to deliver
work. However, the Carnot efficiency is very important,
because it gives us an upper limit on the efficiencies of
all heat engines.

The Absolute Temperature Scale:

Since the Carnot efficiency depends only on the ratio
of the temperatures of two heat reservoirs, the Carnot
machine can be used to define the ratio of temperatures
independently of the properties of any substance:

Tc _ |Qout|

Th Qin

where |Qout| and Qi are the thermal energies transferred
by a Carnot machine. The absolute temperature is then
completely determined by the choice of one reference
point.
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Thermodynamics

Heat Pumps

A heat pump is essentially a refrigerator that is used
to pump thermal energy from a cold reservoir to a hot
reservoir. Using W = |Qn| — Q., we can calculate the
maximum coefficient of performance:

W Qn —Qc  1-Qc/|Qu]

COP = % Qc . Qc/|Qh|

and for the Carnot cycle

Tc / Th Tc Tc

COP pax = -~ =
1-T.)T, Tn—-T. AT

For a heat pump one is interested in the amount of work
needed to put a certain amount of heat ()}, into the hot
reservoir (the room to be heated). We find this from

Qc |Qh|_W
P:—:
COP = = 7
W (COP +1) = |Qun| = W = @nl
1+ COP
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Thermodynamics

Irreversibility and Disorder

Figures 20-9 illustrate how a system moves to a less
ordered state in an irreversible process.

A box containing a gas of mass M at temperature T
moves along a frictionless table and has an inelastic
collisions with a wall.

Before the collision the center-of-mass (cm) energy
M v?_/2 is ordered mechanical energy that could be
converted to work, while the energy of the molecule
motions with respect to the cm is internal energy related
to the temperature of the gas.

The inelastic collision converts the ordered mechanical
energy into random internal energy and the temperature
of the gas rises.
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Thermodynamics

Entropy

Entropy S is a measure of the disorder of the system.
Like the pressure P, the volume V, the temperature T°
and the internal energy U, the entropy is a function of
the state of the system (thermodynamic function). As
with potential energy, it is the change in the entropy
that is important. It is defined by

_ erev

s T

where d(),., IS the heat that must be added to the
system in a reversible process to bring the system from
the initial state to the final state (dQ,.y can be negative).
The equation is a method for calculating the entropy. It
does not mean that a reversible process has actually to
be used in Lab experiments or by nature.

Entropy of an Ideal Gas

We consider a reversible quasi-static process in which
the system absorbs an amount of heat

av
dQ:dU—I—dW:C’VdT—I—nRT7.
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Thermodynamics

This equation can only be integrated, if we know how
T depends one V. But if we divide each term by T', we

obtain iQ dT v

and this equation can be mtegrated since Cy, depends
only on T. For simplicity we assume that Cy is a
constant and find

Q) T Vs
AS = / =Cy In (T1) +nR In (Vl) .

Isothermal Expansion of an Ideal Gas:

The entropy change is

Vs
NS =nRI1 0.
S=n n(v)>

1

In this process an amount of heat leaves the reservoir
and enters the gas. It equals the work done by the gas:

2
QzW:/PdV:nRT d—V—nRTln(V2).
1 1 V Vl

The entropy change of the gas is QQ/T and the entropy
change of the reservoir is —Q)/T. Therefore, the net

5



Thermodynamics

entropy change of the gas plus the reservoir is zero. This
illustrates a general result:

In a reversible process, the entropy change of the system
and its surroundings (universe) is zero.

Free Expansion of an Ideal Gas:

This is an irreversible process. Since the change in the
entropy of a system depends only on the initial and
final states, the entropy change of the gas for the free
expansion is the same as for the isothermal expansion:

|Z
ASgas =nR In (71)

In this case there is no change of the surrounding, so
the entropy of the system and its surroundings increases
by AS = ASgas > 0. The general result is:

In an irreversible process, the entropy of the system and
its surroundings increases.

Yet another formulations of the second law of
thermodynamics is then:

For any process the entropy of the system and its
surroundings never decreases.
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Thermodynamics

Constant Pressure Processes:

d@) = Cpdl =
Lgr T,
AS:C/ —=C ln(—).
P . T P T

As this process is accompanied by the work P AV, the
entropy of the surroundings changes too.

Inelastic Collision:

Example: Fall of a body from height h:

_Q_mgh

AST T

There is no entropy change of the surroundings in this
case.

Heat Conduction from One Reservoir to Another:

As heat conduction is an irreversible process, we expect
the entropy of the system (hot and cold reservoir) to
increase. The hot reservoir looses heat (), so its entropy
change is
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Thermodynamics

The cold reservoir absorbs the heat (), so its entropy
change is

_ _l|
ASe=—7

The net entropy change of the combined system is

_ _ @l [Q]
AS = ASe+ DSy == 5 >0

where the inequality is implied by T} > T..
Carnot Cycle:

As a Carnot cycle is by definition reversible, the entropy
change of the Carnot machine and its surroundings must
be zero after one cycle. The explicit calculation is:

_|Qh| 4+ |Qc| _

NS =
S Th Tc

0

because [Qn|/|Qc| = Th/Tec = |@n|/Th = [Qc|/Te.
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Entropy and the Availability of Energy

In our example of an inelastic collisions the loss of energy
available for work was

Wiest =mgh =T AS .

This is a general result:

In an irreversible process, energy equal to T' AS becomes
unavailable for doing work, where T is the temperature
of the coldest reservoir of the system.

Examples:

In the free expansion of an ideal gas the change
of entropy was n R In(V2/V7), so the work lost is
n RT In(Vo/V1). This is precisely the work that the
gas could have done at constant temperature:

2 2
av Vs
|44 /1 V=nR LV nRkR n(vl)
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Thermodynamics

When heat is conducted from a hot to a cold reservoir,
the work lost is

_ _ Q 1QY _ T
Wlost — Tc AS = Tc (Tc Th) - |Q| (1 Th)

This is precisely the work that could have been done by
running a Carnot engine between the two reservoirs.
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Entropy and Probability

Let us consider the free expansion of a gas from an
initial volume Vi to a final volume V5 > Vi. The
entropy change of this systems is

AS =nR In (%) :

Why is this process irreversible? Why can’t the gas
compress by itself back to the volume V7?7 The reason
is that this is merely very improbable. Assume the gas
consists of N molecules. The probability p of finding all
N molecules in the smaller volume is

Taking the logarithm on both sides, we obtain

V.
In(p) = N In (%) = —nNyln (é)

where n is the number of moles and N4 is Avogadro’s
number.
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Hence, we can write the change in entropy as

AS = B In(p) = —k In(p)

Ny

where k is Boltzmann's constant. The change in entropy
Is the Boltzmann constant time the negative logarithm
of the probability that the gas assembles spontaneously
in the smaller volume.

Note that some cosmological scenarios predict a
contraction of the universe after a period of expansion.
So, one has to be very cautious when applying the
entropy concept beyond its established range of validity,
namely closed thermodynamical systems, which can
reach equilibrium. The universe as a whole may or
may not move towards a final equilibrium state (simply
nobody knows).




