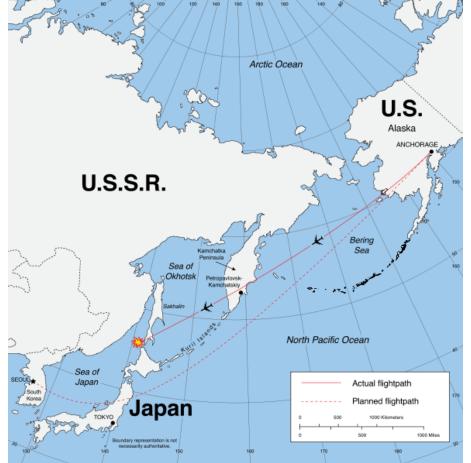
Karen Bermes 10/31/12

GLOBAL POSITIONING SYSTEMS

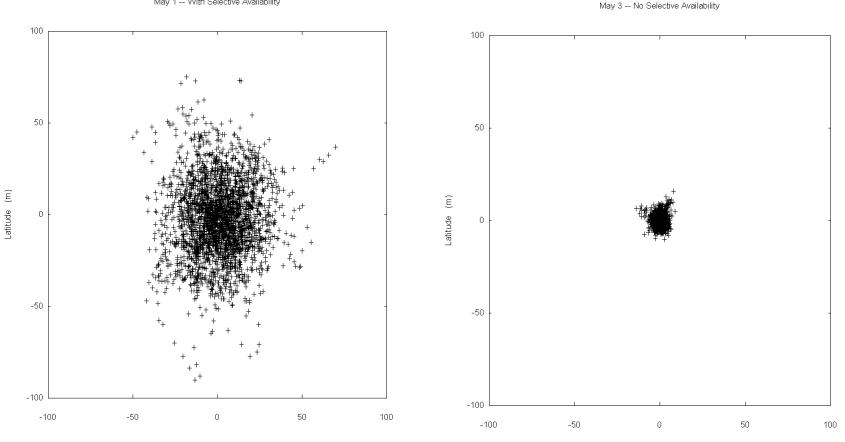
Outline

□ History Selective Availability □ Space Segment Relativistic Effects Special Relativity General Relativity Control Segment User Segment Trilateration Corrections Errors Conclusion


History

1957 USSR Sputnik 1

- Early 1960s US Navy, Army, and Air Force formulated their own ideas for GPS.
 - 1973 first satellite NAVSTAR
 - 11 more launched between 1978-1985
 - 24 satellites with 4 spare were in orbit by 1993
 - Initially intended for military use only
 - Navigation for nuclear weapons


History (cont.)

- 1983 Korean Airlines flight went off track into Soviet airspace and was shot down.
- President Reagan: GPS for civilian use
- Current restrictions
 - Export license required for receivers operating above 515 m/s and 15 km altitude
 - Prevents ballistic missile
- Selective Availability 2000
 Encrypted frequencies

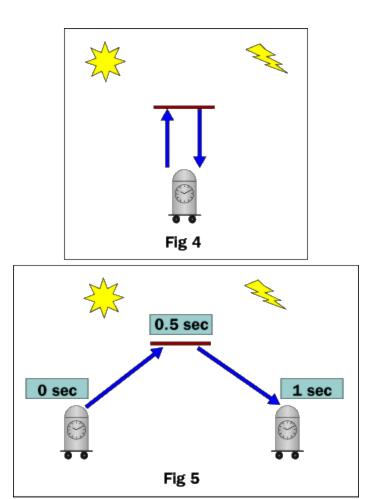
Selective Availability

May 1 -- With Selective Availability

Longitude (m)

Longitude (m)

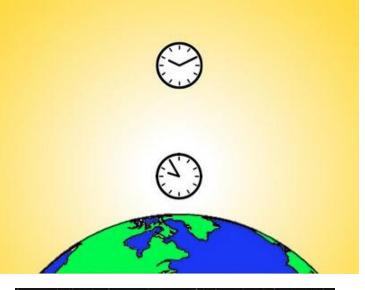
Space Segment

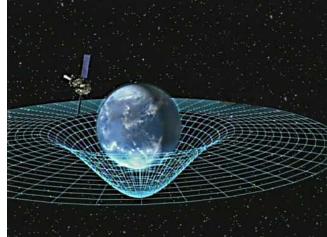

- Constellation of 24 GPS satellites
 - 4 12 visible
- 4 Earth radii
- Orbital period of 12 hours
- Atomic clocks
 - \$50K \$100K
- □ Accuracy
 - □ GPS: 5 10 meters
 - DGPS: 1 meter

Relativistic Effects

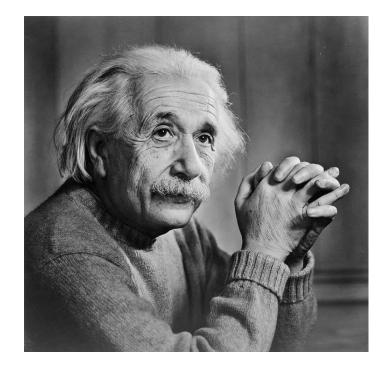
Special Relativity

- Time dilation
 - Clocks tick slower when they're in motion
 - **7**,200 ns/day

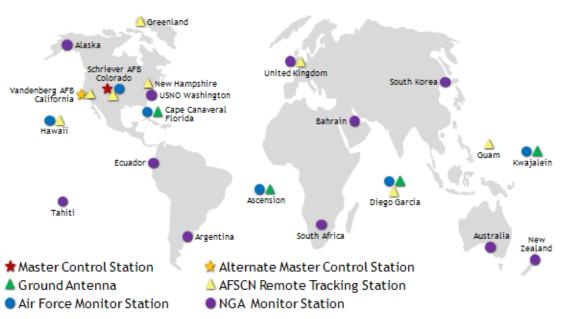



Relativistic Effects (cont.)

General Relativity


 Gravitational time dilation
 Clocks on Earth's surface will tick slower than a clock in orbit around Earth.

Spacetime is curved by massive objects
 45,900 ns/day


Relativistic Effects (cont.)

Special relativity
 Clocks tick slower
 General relativity
 Clocks tick faster
 Rates are set in clocks before satellites are launched.

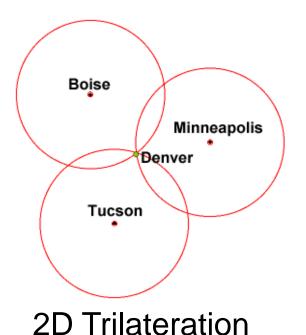
Control Segment

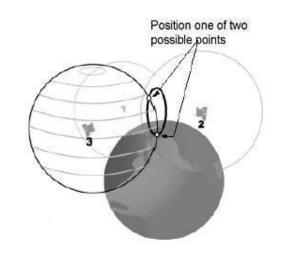
- Master Control Station, Monitor Stations, and Ground Antennas
- Corrects for changes in a satellites' orbit and timing.
- This information is sent back to the satellite so it can send its accurate position to GPS receivers.

User Segment

Calculating the distance to GPS satellites

Satellites broadcast pseudo random code


- Digital on-off pulses
- Unique
- No interference


Pseudo Random Code

 \Box d = ct

Trilateration

Process of determining position using geometry of circles, spheres, or triangles.

3D Trilateration

Corrections

- □ GPS receivers have quartz clocks
 - Inaccurate

Spheres may not intersect

- Receiver will find a time correction to make the spheres intersect at one point
- Receiver's clock is set to universal time
- □ Cross-checked with a 4th satellite

Errors

- Differential GPS
 - Radio waves deflected in atmosphere
- Multi-path errors
 - Buildings, cars
- □ Atomic clock
 - Control segment corrects

Conclusion

- PRC is used to determine the distance to satellites.
- □ Trilateration used to obtain position.
- Control segment corrects for errors.
- Relativity is required in order to obtain an accurate position.
- Experimental evidence for relativity.
- Free service, can be used in any weather conditions.

References

- http://www.astronomy.ohio-state.edu/~pogge/Ast162/Unit5/gps.html
- http://www.metaresearch.org/cosmology/gps-relativity.asp
- http://www.ws5.com/spacetime/
- http://science.howstuffworks.com/science-vs-myth/everydaymyths/relativity10.htm
- http://www.2physics.com/2012/01/quantum-complementarity-meets.html
- http://en.wikipedia.org/wiki/Gravitational_time_dilation
- http://www.tomtom.com/howdoesitwork/page.php?ID=6&CID=2&Language=1
- http://en.wikipedia.org/wiki/Korean_Air_Lines_Flight_007
- http://www.gps.gov/systems/gps/control/
- http://www.pitt.edu/~jdnorton/teaching/HPS_0410/chapters/quantum_theory_completeness/index.html
- http://giscommons.org/?page_id=879
- http://electronics.howstuffworks.com/gadgets/travel/gps1.htm
- http://www.novastars.com/gps/codevscarrier.htm
- http://www.gsm-modem.de/gps_tracking.html