ADVANCED MECHANICS — PHY-4241/5227 HOMEWORK 2

(January 12, 2003) Due on Monday, January 20, 2003

PROBLEM 4

Consider a particle of mass $m \equiv 1$ moving, from $x_1 = 0$ at time $t_1 = 0$ to $x_2 = 1$ at time $t_2 = \pi/2$, under the influence of a one-dimensional anharmonic potential of the form:

$$V(x) = \frac{1}{2}x^2 + \frac{\lambda}{4}x^4$$
, $(\lambda \equiv \frac{1}{4})$.

- a) Using Euler-Lagrange's equations of motion, obtain—but do not solve—the nonlinear differential equation for x(t).
- b) Propose an approximate solution of the form $x(t) = \sin(t) + \alpha \sin(2t)$ and fix the value of the "variational" parameter α by minimizing the action. Compare the action for the optimal path and for the path having $\alpha = 0$.
- c) Using the $\alpha = 0$ path and the optimal path obtained in part b), plot the energy of the system. Is the energy conserved? Explain.

PROBLEM 5

A particle of mass m is constrained to move on a massless hoop of radius a fixed in a vertical plane that is rotating about the vertical axis with constant angular speed ω . The particle can slide through the hoop under the action of gravity.

- a) Obtain the Lagrangian of the system using the polar angle θ as the sole generalized coordinate.
- b) Compute the Hamiltonian function of the system and argue that it is a constant of the motion. In particular show that it may be written as follows:

$$h = \frac{1}{2}ma^2\dot{\theta}^2 + V_{\text{eff}}(\theta) \; .$$

Compute explicitly the value of $V_{\text{eff}}(\theta)$.

c) Make a plot of $V_{\text{eff}}(\theta)$ and use it to show that if ω is greater than a minimum value ω_0 , there can be a solution in which the particle remains stationary at a point other than the bottom of the hoop. Find this stationary point and the value of ω_0 .

PROBLEM 6

(Problem 7.7 Marion and Thornton)

A double pendulum consists of two simple pendula, with one pendulum suspended from the bob of the other. The two pendula have equal length l and have bobs of equal mass m; both pendula are confined to move in the same plane.

- a) Identify clearly the number of independent generalized coordinates. In an effort to maintain uniformity of notation, label the generalized coordinates as $\theta_1, \theta_2, \ldots, \theta_N$.
- b) Write the Lagrangian of the system in terms of the generalized coordinates identified in part a).
- c) Compute—without solving—the Euler-Lagrange's equations of motion for the system. Do not assume small angles.