ADVANCED DYNAMICS — PHY 4241/5227 HOME AND CLASS WORK – SET 6

(February 11, 2009)

(24) Poisson brackets are defined by

$$[g,h] = \sum_{k} \left(\frac{\partial g}{\partial q_k} \frac{\partial h}{\partial p_k} - \frac{\partial h}{\partial q_k} \frac{\partial g}{\partial p_k} \right)$$

where g and h are functions of q_i , p_i and, possibly, t. Show the following properties:

1. $\frac{dg}{dt} = [g, H] + \frac{\partial g}{\partial t} .$ 2. $\dot{q}_j = [q_j, H] .$ 3. $\dot{p}_j = [p_j, H] .$

4.

$$[x_i, x_j] = [p_i, p_j] = 0; \quad [x_i, p_j] = \delta_{ij},$$

5.

$$[x_i, L_j] = \epsilon_{ijk} x_k$$
, $[p_i, L_j] = \epsilon_{ijk} p_k$, and $[L_i, L_j] = \epsilon_{ijk} L_k$,

where the Einstein summation convention is used and $L_j = \epsilon_{jkl} x_k p_l$ is the *i*th component of the angular momentum of the system.

Due February 13 before class (10 points).

(25) Consider two point particles with a Lagrangian (due February 13 in class)

$$\mathcal{L} = \frac{m_1}{2}\vec{v}_1^2 + \frac{m_2}{2}\vec{v}_2^2 - U(r), \quad r = |\vec{r}|, \ \vec{r} = \vec{r}_1 - \vec{r}.$$

- 1. Is the energy of this system conserved (with reason) (2 points)?
- 2. Define the center of mass vector $\vec{R} = \vec{R}(t)$ by $M\dot{\vec{R}} = m_1\dot{\vec{r}}_1 + m_2\dot{\vec{r}}_2$, where $M = m_1 + m_2$ is the total mass, and find the general solution for $\vec{R}(t)$ (2 points).
- 3. Use the special solution $\vec{R} = (m_1 \vec{r_1} + m_2 \vec{r_2})/M$, to express $\vec{r_1}$ and $\vec{r_2}$ through \vec{R} and \vec{r} (3 points).

The center of mass (cm) systems is defined by $\vec{R}(t) = 0$. Show the following equalities in the system .

- 4. $T_{\rm cm} = m_1 \vec{v}_1^2/2 + m_2 \vec{v}_2^2/2 = \mu \vec{v}^2/2$ with $\vec{v} = \dot{\vec{r}}$ and μ the reduced mass. Express μ through m_1 , m_2 and M (3 points).
- 5. $\vec{L} = \vec{r_1} \times \vec{p_1} + \vec{r_2} \times \vec{p_2} = \mu \, \vec{r} \times \vec{v} \, (2 \text{ points}).$