ADVANCED DYNAMICS — PHY 4241/5227 HOME AND CLASS WORK – SET 7

(February 15, 2009)

Read M&T chapter 8.1 to 8.7 (due February 16).

- (26) Assume a central potential and $\vec{L} \neq 0$.
 - 1. Use initial conditions in the CM system, \vec{r}_0 and \vec{v}_0 to define unit vectors \hat{e}_1 , \hat{e}_2 and \hat{e}_3 of a Cartesian coordinates system in which

$$L = |\vec{L}| = \mu r^2 \dot{\phi}, \quad \phi_0 = 0, \ \dot{\phi}_0 > 0$$

holds (ϕ azimuth angle). Due February 16 in class (3 points).

2. Express the total energy $E_{\rm cm}$ in terms of r and ϕ and their derivatives (i.e., get rid of \vec{v}). Substitute the conserved angular momentum L into your expression. Combine all terms, which contain r but not \dot{r} , into the definition of an effective potential $U_{\rm eff}(r)$. Due February 16 in class (5 points).

Turn in both February 18 before class.

(27) Use (in arbitrary units) the parameters $\alpha = \mu = L = 1$ to plot the potential and the effective potential of the Kepler problem

$$U = -\frac{\alpha}{r}$$
 and $U_{\text{eff}}(r) = U(r) + \frac{L^2}{2\,\mu\,r^2}$

in the range $0 < r \leq 10$ with the ordinate restricted to the interval [-1, 0.6]. Describe the motion for $E_{\rm cm} = U_{\rm eff}^{\rm min}$, where $U_{\rm eff}^{\rm min} = U_{\rm eff}(r^{\rm min})$ is the minimum of the effective potential. Calculate $r^{\rm min}$ as function of L, μ and α and give then the numerical value. Due February 18 before class (8 points).

(28) Separate variables in the equation

$$E_{\rm cm} = \frac{\mu}{2}\dot{r}^2 + U_{\rm eff}(r)$$

to derive an integral equation for t(r). Due February 18 in class (4 points).

- (29) Use angular momentum conservation and the separation of variables in the previous problem to derive an integral equation for $\phi(r)$. Due February 18 in class (4 points).
- (30) Kepler problem: Use unit with G = 1 for the gravitational constant and the initial conditions given in the table on the next page to plot the four orbits in the coordinate system used in chapter 8 of T&M (put them all in one plot). If you want, you can download the data in the file Korbits.txt. Due February 23 before class (10 points homework).

- (31) Get the initial positions into the plot of the previous homework. March 2 before class (4 extra points).
- (32) Find positions and velocities in the original system at time t = 1.5 (arbitrary units and G = 1). Ten extra points when turned in by March 16.
- (33) Assume 0 < e < 1 for the eccentricity and transform the elliptic equation

$$\frac{r}{p} = 1 - e \, \cos(\phi) \,, \quad p > 0$$

into the form

$$\frac{x^{\prime 2}}{a^2} + \frac{y^{\prime 2}}{b^2} = 1 \ .$$

This means, *derive* the definitions of x', y', major half-axis a and minor half-axis b in terms of x, y, p and e (p and e are Landau-Lifshitz notation in M&T it is α and ϵ). Due February 20 in class (5 points).

	Masses		Initial Positions			Initial Velocities		
#	i	m_i	$x_{i,0}^1$	$x_{i,0}^2$	$x_{i,0}^3$	$\dot{x}_{i,0}^{1}$	$\dot{x}_{i,0}^{2}$	$\dot{x}_{i,0}^{3}$
1	1	0.651	0.585	-0.238	-0.755	-0.828	-0.865	-0.726
	2	0.931	-0.096	0.000	0.357	-0.209	0.107	-0.660
2	1	1.510	0.460	-0.359	-0.234	-0.918	-0.941	-0.323
	2	0.126	-0.066	-0.090	-0.809	0.789	0.788	0.620
3	1	1.328	-0.125	0.898	0.194	-0.452	0.172	0.125
	2	1.999	-0.449	-0.085	-0.454	-0.976	-0.990	-0.968
4	1	0.180	0.204	-0.968	-0.753	-0.811	-0.632	0.784
	2	1.560	-0.889	-0.979	0.854	-0.323	-0.774	-0.533

Table 1: Initial conditions for the Kepler problem (arbitrary units and G = 1).