(37) A particle of mass m and electric charge q moves under the influence of a constant magnetic field of the form $\mathbf{B}(r) = B_0 \hat{z}$. Obtain the most general solution for the velocity $\mathbf{v}(t)$ using Newton’s second law of motion in combination with the Lorentz force

$$\mathbf{F} = m \ddot{\mathbf{v}} = \frac{q}{c} \mathbf{v} \times \mathbf{B}.$$

Home work, due March 2 before class (8 points).

Read the Notes on Relativity up to section 1.1.3 (due February 27).

(38) One of the Apollo missions left a mirror on the moon. The McDonald Observatory in Texas flashes a laser wave at this mirror, which is received back after an elapsed time Δt. At what distance was the mirror, when it reflected the signal? Due February 25 in class (1 point).

(39) Let (in arbitrary units)

(a) $ct = 5$, $x^1 = 1$, $x^2 = 2$, $x^3 = 3$,
(b) $ct = 5$, $x_1 = 1$, $x^2 = 2$, $x^3 = 3$,
(c) $ct = 5$, $x^1 = 1$, $x^2 = 2$, $x^3 = -3$,
(d) $ct = 5$, $x^1 = 0$, $x^2 = 3$, $x^3 = 4$,
(e) $ct = 5$, $x_1 = 0$, $x_2 = 3$, $x_3 = 4$,
(f) $ct = 5$, $x^1 = 2$, $x^2 = 3$, $x^3 = 4$,
(g) $ct = 5$, $x^1 = 0$, $x^2 = 3$, $x^3 = -4$.

Write down the row and column vector for each case and calculate $x^\alpha x_\alpha$. Due February 25 in class (7 points).

(40) Consider the 2D rotation

$$\begin{pmatrix} x'{}^1 \\ x'{}^4 \end{pmatrix} = \begin{pmatrix} \cos(\phi) & \sin(\phi) \\ -\sin(\phi) & \cos(\phi) \end{pmatrix} \begin{pmatrix} x^1 \\ x^4 \end{pmatrix}$$

and substitute $\phi = i \zeta$, $x^4 = i x^0$, $x'{}^4 = i x'{}^0$. Write out the equations for $x'{}^1$ and $x'{}^0$. Due February 27 in class (8 points).