The electromagnetic field tensor transforms according to

\[F^\alpha_\beta = a^\alpha_\gamma a^\beta_\delta F^\gamma_\delta. \]

1. Choose the particular case of a Lorentz boost in \(x^1 \)-direction, \(\vec{v} = v \hat{e}_1 \), and write down the transformation law for the electric field \(\vec{E} \) and the magnetic induction \(\vec{B} \). Due April 15 before class (8 points).

2. Compare with the results you get from (due April 15 before class (4 points).

\[
\begin{align*}
\vec{E}' & = \gamma (\vec{E} + \vec{B} \times \vec{v}) - \frac{\gamma^2}{\gamma + 1} \vec{\beta} (\vec{\beta} \vec{E}) , \\
\vec{B}' & = \gamma (\vec{B} - \vec{B} \times \vec{E}) - \frac{\gamma^2}{\gamma + 1} \vec{\beta} (\vec{\beta} \vec{B}) .
\end{align*}
\]

(59) In the same way that the contraction, or relativistic dot product, of two four vectors is a Lorentz invariant, the contraction of two relativistic tensors is also a Lorentz invariant (Griffiths Problem 12.50).

1. Compute the three Lorentz invariants from the contraction of the tensors:

\[F^{\mu\nu} F_{\mu\nu}, \quad *F^{\mu\nu} *F_{\mu\nu} \quad \text{and} \quad F^{\mu\nu} *F_{\mu\nu} \]

in terms of the electric and magnetic fields \(\vec{E} \) and \(\vec{B} \). Due April 15 in class (3 points).

2. Suppose that in one inertial frame \(\vec{B} = 0 \) but \(\vec{E} \neq 0 \) (at some point \(P \)). Is it possible to find another system in which the electric field is zero at \(P \)? Due April 15 in class (1 point).

(60) The non–zero fields \(\vec{E} \) and \(\vec{B} \) are non–parallel in inertial frame \(K \). Inertial frame \(K' \) moves with velocity \(\vec{v} \) with respect to \(K \). Find a physical velocity \(\vec{v} \) so that \(\vec{E}' \) and \(\vec{B}' \) are parallel. (Hint: Try \(\vec{E} = E_2 \hat{e}_2, \vec{B} = B_2 \hat{e}_2 + B_3 \hat{e}_3 \) and \(\vec{v} = v \hat{e}_1 \).) Due April 17 before class (10 points).

(61) Transform

\[f^i = \frac{q}{c} F^{i\beta} U_\beta \]

into

\[\vec{f} = q \gamma \vec{E} + \frac{q}{c} \vec{U} \times \vec{B} . \]

Due April 17 in class (4 points).